Godfrey D. Pearlson

Learn More
Independent component analysis (ICA) is a promising analysis method that is being increasingly applied to fMRI data. A principal advantage of this approach is its applicability to cognitive paradigms for which detailed models of brain activity are not available. Independent component analysis has been successfully utilized to analyze single-subject fMRI(More)
Independent component analysis (ICA) is a technique that attempts to separate data into maximally independent groups. Achieving maximal independence in space or time yields two varieties of ICA meaningful for functional MRI (fMRI) applications: spatial ICA (SICA) and temporal ICA (TICA). SICA has so far dominated the application of ICA to fMRI. The(More)
OBJECTIVE The "default mode" has been defined as a baseline condition of brain function and is of interest because its component brain regions are believed to be abnormal in schizophrenia. It was hypothesized that the default mode network would show abnormal activation and connectivity in patients with schizophrenia. METHOD Patients with schizophrenia(More)
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this(More)
A versatile resource program was developed for diffusion tensor image (DTI) computation and fiber tracking. The software can read data formats from a variety of MR scanners. Tensor calculation is performed by solving an over-determined linear equation system using least square fitting. Various types of map data, such as tensor elements, eigenvalues,(More)
As the number of studies related to the early identification of and intervention in the schizophrenia prodrome continues to grow, it becomes increasingly critical to develop methods to diagnose this new clinical entity with validity. Furthermore, given the low incidence of patients and the need for multisite collaboration, diagnostic and symptom severity(More)
Brain regions which exhibit temporally coherent fluctuations, have been increasingly studied using functional magnetic resonance imaging (fMRI). Such networks are often identified in the context of an fMRI scan collected during rest (and thus are called "resting state networks"); however, they are also present during (and modulated by) the performance of a(More)
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using(More)
The Motor-Free Visual Perception Test, revised (MVPT-R), provides a measure of visual perceptual processing. It involves different cognitive elements including visual discrimination, spatial relationships, and mental rotation. We adapted the MVPT-R to an event-related functional MRI (fMRI) environment to investigate the brain regions involved in the(More)
Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently,(More)