Learn More
Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant(More)
Abnormal functional activity induces long-lasting physiological alterations in neural pathways that may play a role in the development of epilepsy. The cellular mechanisms of these alterations are not well understood. One hypothesis is that abnormal activity causes structural reorganization of neural pathways and promotes epileptogenesis. This report(More)
The majority of human melanomas harbor activating mutations of either N-RAS or its downstream effector B-RAF, which cause activation of mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) kinase and the ERK MAPK cascade. The melanoma-relevant effectors of ERK activation, however, are largely unknown. In this work, we show(More)
Angiogenesis is a critical step during cancer progression. The VEGF is a major stimulator for angiogenesis and is predominantly contributed by cancer cells in tumors. Inhibition of the VEGF signaling pathway has shown promising therapeutic benefits for cancer patients, but adaptive tumor responses are often observed, indicating the need for further(More)
UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the(More)
Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine(More)
The incidence of skin cancer is on the rise, with over 1 million new cases yearly. Although it is known that squamous cell cancers (SCC) are caused by UV light, the mechanism(s) involved remains poorly understood. In vitro studies with epithelial cells or reports examining malignant skin lesions suggest that loss of E-cadherin–mediated cell-cell contacts(More)
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon(More)
Plexin B1, the receptor for Semaphorin 4D (Sema4D), is expressed by melanocytes in the skin. We recently showed that Sema4D suppresses activation of the hepatocyte growth factor receptor, MET, in melanocytes, and that knockdown of Plexin B1 results in activation of MET. MET signaling mediates proliferation, survival and migration in melanocytes, and its(More)
Penile squamous cell carcinoma is a rare malignancy seen more frequently in developing nations. Metastasis occurs in a predictable manner, with superficial lymph node involvement occurring first, followed by deep lymph node involvement, and then distant spread. Brain, lung, liver, and bone are the typical sites of distant metastasis. We present the unusual(More)