Gloria Bertoli

Learn More
Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of several human cancers, including breast cancer (BC), as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. This review presents the state of the art on the role of miRNAs in the diagnosis, prognosis, and therapy of BC. Based on the(More)
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify(More)
The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing cancer-initiating cells with stem cell properties at the single cell level has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the(More)
BACKGROUND The identification of the organisation and dynamics of molecular pathways is crucial for the understanding of cell function. In order to reconstruct the molecular pathways in which a gene of interest is involved in regulating a cell, it is important to identify the set of genes to which it interacts with to determine cell function. In this(More)
In this work an integrated approach was used to identify functional miRNAs regulating gene pathway cross-talk in breast cancer (BC). We first integrated gene expression profiles and biological pathway information to explore the underlying associations between genes differently expressed among normal and BC samples and pathways enriched from these genes. For(More)
Prostate cancer (PC) includes several phenotypes, from indolent to highly aggressive cancer. Actual diagnostic and prognostic tools have several limitations, and there is a need for new biomarkers to stratify patients and assign them optimal therapies by taking into account potential genetic and epigenetic differences. MicroRNAs (miRNAs) are small sequences(More)
Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods(More)
  • 1