Glenn T Furuta

Learn More
Eosinophilic esophagitis (EoE) is a clinicopathologic condition of increasing recognition and prevalence. In 2007, a consensus recommendation provided clinical and histopathologic guidance for the diagnosis and treatment of EoE; however, only a minority of physicians use the 2007 guidelines, which require fulfillment of both histologic and clinical(More)
During the last decade, clinical practice saw a rapid increase of patients with esophageal eosinophilia who were thought to have gastroesophageal reflux disease (GERD) but who did not respond to medical and/or surgical GERD management. Subsequent studies demonstrated that these patients had a "new" disease termed eosinophilic esophagitis (EE). As(More)
Food allergy is an important public health problem that affects children and adults and may be increasing in prevalence. Despite the risk of severe allergic reactions and even death, there is no current treatment for food allergy: the disease can only be managed by allergen avoidance or treatment of symptoms. The diagnosis and management of food allergy(More)
Esophageal eosinophilia and eosinophilic esophagitis (EoE) are increasingly recognized and prevalent conditions, which now represent common clinical problems encountered by gastroenterologists, pathologists, and allergists. The study of EoE has become a dynamic field with an evolving understanding of the pathogenesis, diagnosis, and treatment. Although(More)
Limited oxygen delivery to tissues (hypoxia) is common in a variety of disease states. A number of parallels exist between hypoxia and acute inflammation, including the observation that both influence vascular permeability. As such, we compared the functional influence of activated polymorphonuclear leukocytes (PMN) on normoxic and posthypoxic endothelial(More)
Under conditions of limited oxygen availability (hypoxia), multiple cell types release adenine nucleotides in the form of ATP, ADP, and AMP. Extracellular AMP is metabolized to adenosine by surface-expressed ecto-5'-nucleotidase (CD73) and subsequently activates surface adenosine receptors regulating endothelial and epithelial barrier function. Therefore,(More)
Mucosal epithelial cells are uniquely equipped to maintain barrier function even under adverse conditions. Previous studies have implicated hypoxia in mucosal tissue damage resulting from both acute and chronic inflammation. Given the importance of the transcriptional regulator hypoxia-inducible factor-1 (HIF-1) for adaptive hypoxia responses, we(More)
BACKGROUND & AIMS A number of recent studies have implicated tissue hypoxia in both acute and chronic inflammatory diseases, particularly as they relate to mucosal surfaces lined by epithelial cells. In this context, a protective role for the transcriptional regulator hypoxia-inducible factor (HIF) was shown through conditional deletion of epithelial(More)
Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during(More)
BACKGROUND Inflammatory bowel diseases, encompassing Crohn's disease and ulcerative colitis, are characterised by persistent leucocyte tissue infiltration leading to perpetuation of an inappropriate inflammatory cascade. The neuronal guidance molecule netrin-1 has recently been implicated in the orchestration of leucocyte trafficking during acute(More)