Learn More
This paper describes an unconventional way to apply wireless networking in emerging technologies. It makes the case for using a two-tier hybrid wireless/wired architecture to interconnect hundreds to thousands of cores in chip multiprocessors (CMPs), where current interconnect technologies face severe scaling limitations in excessive latency, long wiring,(More)
In this paper, we explore the use of multi-band radio frequency interconnect (or RF-I) with signal propagation at the speed of light to provide shortcuts in a many core network-on-chip (NoC) mesh topology. We investigate the costs associated with this technology, and examine the latency and bandwidth benefits that it can provide. Assuming a 400mm 2 die, we(More)
In the pursuit of instruction-level parallelism, significant demands are placed on a processor's instruction delivery mechanism. Delivering the performance necessary to meet future processor execution targets requires that the performance of the instruction delivery mechanism scale with the execution core. Attaining these targets is a challenging task due(More)
Future interactive entertainment applications will featurethe physical simulation of thousands of interacting objectsusing explosions, breakable objects, and cloth effects. Whilethese applications require a tremendous amount of performanceto satisfy the minimum frame rate of 30 FPS, there is a dramatic amount of parallelism in future physics workloads.How(More)
As chip multiprocessors scale to a greater number of processing cores, on-chip interconnection networks will experience dramatic increases in both bandwidth demand and power dissipation. Fortunately, promising gains can be realized via integration of Radio Frequency Interconnect (RF-I) through on-chip transmission lines with traditional interconnects(More)
Steering is a challenging task, required by nearly all agents in virtual worlds. There is a large and growing number of approaches for steering, and it is becoming increasingly important to ask a fundamental question: how can we objectively compare steering algorithms? To our knowledge, there is no standard way of evaluating or comparing the quality of(More)
The error tolerance of human perception offers a range of opportunities to trade numerical accuracy for performance in physics-based simulation. However, most prior work on perceptual error tolerance either focus exclusively on understanding the tolerance of the human visual system or burden the application developer with case-specific implementations such(More)
ÐIn the pursuit of instruction-level parallelism, significant demands are placed on a processor's instruction delivery mechanism. Delivering the performance necessary to meet future processor execution targets requires that the performance of the instruction delivery mechanism scale with the execution core. Attaining these targets is a challenging task due(More)