Learn More
The cerebral cortex is a complex laminated structure generated by the sequential migration of developing neurons from the ventricular zone. One of the molecules that may play a role in cortical morphogenesis is N-cadherin since its blocking causes disruption of the ordered arrangement of cells in other neural tissues, such as the neural retina. Here, we(More)
It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a 'hybrid adhering(More)
Persistent changes in spine shape are coupled to long-lasting synaptic plasticity in hippocampus. The molecules that coordinate such persistent structural and functional plasticity are unknown. Here, we generated mice in which the cell adhesion molecule N-cadherin was conditionally ablated from postnatal, excitatory synapses in hippocampus. We applied to(More)
Our previous studies showed an essential role for connexin 43 or alpha1 connexin (Cx43alpha1) gap junctions in the modulation of neural crest cell motility. Cx43alpha1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin(More)
To investigate the functions of P-cadherin in vivo, we have mutated the gene encoding this cell adhesion receptor in mice. In contrast to E- and N-cadherin- deficient mice, mice homozygous for the P-cadherin mutation are viable. Although P-cadherin is expressed at high levels in the placenta, P-cadherin-null females are fertile. P-cadherin expression is(More)
Somitogenesis during early stages in the chick and mouse embryo was examined in relation to N-cadherin-mediated adhesion. Previous studies indicated that N-cadherin localizes to the somite regions during their formation. Those observations were extended to include a spatiotemporal immunohistochemical analyses of beta-catenin and alpha-catenin, as well as a(More)
Myoblast fusion is essential to muscle tissue development yet remains poorly understood. N-cadherin, like other cell surface adhesion molecules, has been implicated by others in muscle formation based on its pattern of expression and on inhibition of myoblast aggregation and fusion by antibodies or peptide mimics. Mice rendered homozygous null for(More)
Adherens junctions and desmosomes are intercellular adhesive junctions and essential for the morphogenesis, differentiation, and maintenance of tissues that are subjected to high mechanical stress, including heart and skin. The different junction complexes are organized at the termini of the cardiomyocyte called the intercalated disc. Disruption of adhesive(More)
Endothelial cells express two classic cadherins, VE-cadherin and N-cadherin. The importance of VE-cadherin in vascular development is well known; however, the function of N-cadherin in endothelial cells remains poorly understood. Contrary to previous studies, we found that N-cadherin localizes to endothelial cell-cell junctions in addition to its well-known(More)
Strong cell–cell adhesion mediated by adherens junctions is dependent on anchoring the transmembrane cadherin molecule to the underlying actin cytoskeleton. To do this, the cadherin cytoplasmic domain interacts with catenin proteins, which include α-catenin that binds directly to filamentous actin. Originally thought to be a static structure, the connection(More)