Glenn K. Lockwood

Learn More
—NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide(More)
The demand for virtualization within high-performance computing is rapidly growing as new communities, driven by both new application stacks and new computing modalities, continue to grow and expand. While virtualization has traditionally come with significant penalties in I/O performance that have precluded its use in mainstream large-scale computing(More)
Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in(More)
The increasing expansion of computations in non-traditional domain sciences has resulted in an increasing demand for research cyberinfrastructure that is suitable for small- and mid-scale job sizes. The computational aspects of these emerging communities are coming into focus and being addressed through the deployment of several new XSEDE resources that(More)
Multi-rail InfiniBand networks provide options to improve bandwidth, increase reliability, and lower latency for multi-core nodes. The Gordon supercomputer at SDSC, with its dual-rail InfiniBand 3-D torus network, is used to evaluate the performance impact of using multiple rails. The study was performed using the OSU micro-benchmarks, the P3FFT application(More)
—Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for(More)
Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and(More)
We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive(More)
Scientific discoveries are increasingly dependent upon the analysis of large volumes of data from observations and simulations of complex phenomena. Scientists compose the complex analyses as workflows and execute them on large-scale HPC systems. The workflow structures are in contrast with monolithic single simulations that have often been the primary use(More)
  • 1