Learn More
Comamonas sp. strain JS765 can grow with nitrobenzene as the sole source of carbon, nitrogen, and energy. We report here the sequence of the genes encoding nitrobenzene dioxygenase (NBDO), which catalyzes the first step in the degradation of nitrobenzene by strain JS765. The components of NBDO were designated Reductase(NBZ), Ferredoxin(NBZ),(More)
The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic(More)
Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and(More)
Layer-by-layer assembly uses alternating charged layers of polyionic polymers to coat materials sequentially in a sheath of functionalized nanofilms. Bacterial spores were encapsulated in organized ultrathin shells using layer-by-layer assembly in order to assess the biomaterial as a suitable core and determine the physiological effects of the coating. The(More)
The redox potentials and reorganization energies of the type 1 (T1) Cu site in four multicopper oxidases were calculated by combining first principles density functional theory (QM) and QM/MM molecular dynamics (MD) simulations. The model enzymes selected included the laccase from Trametes versicolor, the laccase-like enzyme isolated from Bacillus subtilis,(More)
We report a method for the synthesis of antimicrobial coatings on medical instruments that combines the bacteriolytic activity of lysozyme and the biocidal properties of silver nanoparticles. Colloidal suspensions of lysozyme and silver nanoparticles were electrophoretically deposited onto the surface of stainless steel surgical blades and needles.(More)
The pathways for 2,4-dinitrotoluene (2,4-DNT) and nitrobenzene offer fine illustrations of how the ability to assimilate new carbon sources evolves in bacteria. Studies of the degradation pathways provide insight about two principal strategies for overcoming the metabolic block imposed by nitro- substituents on aromatic compounds. The 2,4-DNT pathway uses(More)
An enzyme-based monitoring system provides the basis for continuous sampling of organophosphate contamination in air. The enzymes butyrylcholinesterase (BuChE) and organophosphate hydrolase (OPH) are stabilized by encapsulation in biomimetic silica nanoparticles, entrained within a packed bed column. The resulting immobilized enzyme reactors (IMERs) were(More)
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in(More)