Glenn E. Kirsch

Learn More
Ventricular fibrillation causes more than 300,000 sudden deaths each year in the USA alone. In approximately 5-12% of these cases, there are no demonstrable cardiac or non-cardiac causes to account for the episode, which is therefore classified as idiopathic ventricular fibrillation (IVF). A distinct group of IVF patients has been found to present with a(More)
INTRODUCTION The cardiac action potential (CAP) of stem cell-derived human cardiomyocytes (SC-hCMs) is potentially the most powerful preclinical biomarker for cardiac safety and efficacy in humans. Our experiments tested this hypothesis by examining the CAP and relevant pharmacology of these cells. METHODS The electrophysiological and pharmacological(More)
4-Aminopyridine (4AP) blocks the intracellular mouth of voltage-gated K+ channels. We identified critical regions for 4AP binding with chimeric channels in which segments of a low affinity clone (Kv2.1, IC50 = 18 mM) were replaced with those of a high affinity clone (Kv3.1, IC50 = 0.1 mM). 4AP sensitivity was not transferred with the S5-S6 linker (pore or P(More)
We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV;(More)
4-aminopyridine (4AP) is widely used as a selective blocker of voltage-activated K+ currents in excitable membranes, but its mechanism and site of action at the molecular level are not well understood. To address this problem we have analyzed 4AP block in Kv2.1 and Kv3.1, mammalian representatives of the Drosophila Shab and Shaw subfamilies of voltage-gated(More)
Tetraethylammonium (TEA) is a small ion that is thought to block open K+ channels by binding either to an internal or to an external site. For this reason, it has been used to probe the ion conduction pathway or pore of K+ channel mutants and a K+ channel chimera. The results suggested that the region between transmembrane segments 5 and 6 (S5-S6 linker)(More)
BACKGROUND A mutation in the cardiac sodium channel gene (SCN5A) has been described in patients with the syndrome of right bundle branch block, ST-segment elevation in leads V1 to V3, and sudden death (Brugada syndrome). These electrocardiographic manifestations are transient in many patients with the syndrome. The present study examined arrhythmic risk in(More)
INTRODUCTION Direct block of I(Kr) by non-antiarrhythmic drugs (NARDs) is a major cause of QT prolongation and torsades de pointes (TdP), and has made the hERG potassium channel a major target of drug safety programs in cardiotoxicity. Block of hERG currents is not the only way that drugs can adversely impact the repolarizing current I(Kr), however. We have(More)
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization.(More)
BACKGROUND T-wave alternans is due to alternation of membrane repolarization at the cellular level and is a risk factor for sudden cardiac death. Recently, a hysteresis effect has been reported in patients whereby T-wave alternans, once induced by rapid heart rate, persists even when heart rate is subsequently slowed. We hypothesized that alternans(More)