Learn More
We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV;(More)
Ventricular fibrillation causes more than 300,000 sudden deaths each year in the USA alone. In approximately 5-12% of these cases, there are no demonstrable cardiac or non-cardiac causes to account for the episode, which is therefore classified as idiopathic ventricular fibrillation (IVF). A distinct group of IVF patients has been found to present with a(More)
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization.(More)
Single Na channel currents were compared in ventricular myocytes and cortical neurons of neonatal rats using the gigaseal patch-clamp method to determine whether tissue-specific differences in gating can be detected at the single-channel level. Single-channel currents were recorded in cell-attached and excised membrane patches at test potentials of -70 to(More)
The effects of TsIV-5, a toxin isolated from the Brazilian scorpion Tityus serrulatus, on whole-cell and single-channel Na currents were determined in N18 neuroblastoma cells. In whole-cell records at a test potential of -10 mV, external application of 500 nM TsIV-5 slowed inactivation 20-fold and increased peak current by about one-third without changing(More)
The structure of the carboxyl half of the pore-forming region of Kv2.1 was studied by replacing each of 15 consecutive residues between positions 383 and 369 with a reporter cysteine residue. Extracellular application of charged, membrane-impermeant methanethiosulfonates irreversibly modified currents at four cysteine-substituted positions, K382, Y380,(More)
4-Aminopyridine (4AP) blocks the intracellular mouth of voltage-gated K+ channels. We identified critical regions for 4AP binding with chimeric channels in which segments of a low affinity clone (Kv2.1, IC50 = 18 mM) were replaced with those of a high affinity clone (Kv3.1, IC50 = 0.1 mM). 4AP sensitivity was not transferred with the S5-S6 linker (pore or P(More)
We have determined the effects of coexpression of Kv2.1 with electrically silent Kv5.1 or Kv6.1 alpha-subunits in Xenopus oocytes on channel gating. Kv2.1/5.1 selectively accelerated the rate ofinactivation at intermediate potentials (-30 to 0 mV), without affecting the rate at strong depolarization (0 to +40 mV), and markedly accelerated the rate of(More)
INTRODUCTION The cardiac action potential (CAP) of stem cell-derived human cardiomyocytes (SC-hCMs) is potentially the most powerful preclinical biomarker for cardiac safety and efficacy in humans. Our experiments tested this hypothesis by examining the CAP and relevant pharmacology of these cells. METHODS The electrophysiological and pharmacological(More)
Heteromultimer formation between Kv potassium channel subfamilies with the production of a novel current is reported for the first time. Protein-protein interactions between Kv2.1 and electrically silent Kv6.1 alpha-subunits were detected using two microelectrode voltage clamp and yeast two-hybrid measurements. Amino terminal portions of Kv6.1 were unable(More)