Glenda M. Bishop

Learn More
Iron is essential for the normal functioning of cells but since it is also capable of generating toxic reactive oxygen species, the metabolism of iron is tightly regulated. The present article advances the view that astrocytes are largely responsible for distributing iron in the brain. Capillary endothelial cells are separated from the neuropil by the(More)
Iron that is not bound to storage proteins can catalyse the generation of toxic hydroxyl radicals. Iron can be released from brain storage proteins by hypoxic conditions, such as those that accompany stroke, and the situation can be compounded by iron released from hemoglobin in extravasated blood cells. Despite the neurotoxicity of iron, there is little(More)
Oxidative stress has been implicated in the progression of ageing and in many age-related neurodegenerative conditions. Astrocytes play a major role in the antioxidant protection of the brain, yet little is known about how the antioxidant defenses of astrocytes change across the lifespan. This study assessed the antioxidant capacity and glutathione(More)
The release of zinc (Zn) from glutamatergic synapses contributes to the neuropathology of ischemia, traumatic brain injury, and stroke. Astrocytes surround glutamatergic synapses and are vulnerable to the toxicity of Zn, which impairs their antioxidative glutathione (GSH) system and elevates the production of reactive oxygen species (ROS). It is not known(More)
Hemorrhagic stroke is a common cause of permanent brain damage, with a significant amount of the damage occurring in the weeks following a stroke. This secondary damage is partly due to the toxic effects of hemin, a breakdown product of hemoglobin. The serum proteins hemopexin and albumin can bind hemin, but these natural defenses are insufficient to cope(More)
Hemin is cytotoxic, and contributes to the brain damage that accompanies hemorrhagic stroke. In order to better understand the basis of hemin toxicity in astrocytes, the present study quantified hemin metabolism and compared it to the pattern of cell death. Heme oxygenase-1 (HO-1) expression was first evident after 2 h incubation with hemin, with maximal(More)
Hemin, which is toxic to brain cells, has been reported to be taken up by cultured astrocytes; however, the mechanism of uptake is currently unknown. The present study investigated the mechanism of hemin uptake by rat primary astrocyte cultures. In medium containing 10% fetal calf serum, cultured astrocytes failed to accumulate significant amounts of(More)
Osteopontin (OPN) is a glycophosphoprotein expressed by several cell types and has pro-adhesive, chemotactic, and cytokine-like properties. OPN is involved in a number of physiologic and pathologic events including angiogenesis, apoptosis, inflammation, oxidative stress, remyelination, wound healing, bone remodeling, cell migration and tumorigenesis. Since(More)
Astrocytes are central to iron and ascorbate homoeostasis within the brain. Although NTBI (non-transferrin-bound iron) may be a major form of iron imported by astrocytes in vivo, the mechanisms responsible remain unclear. The present study examines NTBI uptake by cultured astrocytes and the involvement of ascorbate and DMT1 (divalent metal transporter 1).(More)
The 'amyloid hypothesis' has guided research into Alzheimer's disease (AD) for more than a decade. A detailed review of the relevant data led us to conclude that some data, particularly those from transgenic mice, are inconsistent with the predictions of the amyloid hypothesis. Instead, most data are consistent with the notion that amyloid-beta (Abeta)(More)