Glen L. Hartman

Learn More
The soybean aphid (Aphis glycines Matsumura), a new pest of soybean [Glycine max (L.) Merr.], rapidly spread throughout North America after its arrival in 2000 and caused millions of dollars in economic losses. At present, the application of insecticides is the only means to control the soybean aphid. However, genetic resistance to the aphid was recently(More)
Shortly after its arrival, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), became established as the most important insect pest of soybean, Glycine max L. (Merr.), in the northern part of the North American soybean production region. Soybean resistance is an environmentally sustainable method to manage the pest and new soybean aphid(More)
Transcript profiles in aphid (Aphis glycines)-resistant (cv. Dowling) and -susceptible (cv. Williams 82) soybean (Glycine max) cultivars using soybean cDNA microarrays were investigated. Large-scale soybean cDNA microarrays representing approx. 18 000 genes or c. 30% of the soybean genome were compared at 6 and 12 h post-application of aphids. In a separate(More)
The soybean aphid [Aphis glycines Matsumura] is an important pest of soybean [Glycine max (L.) Merr.] in North America. Single dominant genes in the cultivars ‘Dowling’ and ‘Jackson’ control resistance to the soybean aphid. The gene in Dowling was named Rag1, and the genetic relationship between Rag1 and the gene in Jackson is not known. The objectives of(More)
The fecundity, longevity, mortality, and maturation of the soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae), were characterized using three resistant soybean, Glycine max (L.) Merrill, genotypes ('Dowling', 'Jackson', and PI200538 'Sugao Zarai') and two susceptible genotypes ('Pana' and 'Loda'). Antibiosis in the resistant genotypes was(More)
The use of resistant cultivars is the most effective method for controlling sudden death syndrome (SDS), caused by Fusarium solani f. sp. glycines (FSG) (syn. Fusarium virguliforme Akoi, O’Donnell, Homma and Lattanzi), in soybean [Glycine max (L.) Merr.]. Previous research has led to the identification of soybean genotypes with partial resistance to SDS and(More)
The soybean aphid, Aphis glycines Matsumura, is a new pest of soybean, Glycine max (L.) Merr., in North America. It has become widespread on soybean in North America since it was first identified in the Midwest in 2000. Species of Rhamnus L. (buckthorn) are the primary hosts of A. glycines, and soybean is known as a secondary host. There is limited(More)
Fusarium solani is a soilborne plant pathogen that infects many different hosts. Within the species, there is some specialization, and a number of forma specialis have been described based on host affiliation. One of these, F. solani f. sp. glycines, infects soybean and causes sudden death syndrome. To differentiate between F. solani f. sp. glycines and(More)
The phytotoxicity of culture filtrates of Fusarium solani f. sp. glycines, the fungus causing sudden death syndrome (SDS) of soybean (Glycine max), was tested with a viability stain of soybean suspension-cultured cells and a stem cutting assay of soybean seedlings. Suspension-cultured cells from a SDS-susceptible soybean cultivar were exposed to cell-free(More)