Glen A. Tarran

Learn More
Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a(More)
We developed oligonucleotide probes, based on plastid 16S ribosomal DNA (rDNA) sequences, to target 10 different algal classes (Chlorarachniophyceae, Chrysophyceae, Cryptophyceae, Eustigmatophyceae, Pavlovophyceae, Pelagophyceae, Pinguiophyceae, Prasinophyceae [clade VI], Prymnesiophyceae, and Trebouxiophyceae), for use with dot blot hybridization(More)
Oligotrophic subtropical gyres are the largest oceanic ecosystems, covering >40% of the Earth's surface. Unicellular cyanobacteria and the smallest algae (plastidic protists) dominate CO(2) fixation in these ecosystems, competing for dissolved inorganic nutrients. Here we present direct evidence from the surface mixed layer of the subtropical gyres and(More)
Direct evidence that marine cyanobacteria take up organic nitrogen compounds in situ at high rates is reported. About 33% of the total bacterioplankton turnover of amino acids, determined with a representative [(35)S]methionine precursor and flow sorting, can be assigned to Prochlorococcus spp. and 3% can be assigned to Synechococcus spp. in the(More)
Identification of the proximal nutrient limiting primary production is a necessary first step toward evaluating the physiological state of phytoplankton communities and the biogeochemical constraints on the current oceanic carbon cycle. We conducted 48-h nutrient addition bioassay experiments to evaluate nitrogen, phosphorus, and iron limitation of primary(More)
Planktonic algae <5 m in size are major fixers of inorganic carbon in the ocean. They dominate phytoplankton biomass in post-bloom, stratified oceanic temperate waters. Traditionally, large and small algae are viewed as having a critical growth dependence on inorganic nutrients, which the latter can better acquire at lower ambient concentrations owing to(More)
Identification problems restrict quantitative ecological research on specific nanoflagellates. Identification by specific oligonucleotide probes permits use of flow cytometry for enumeration and measurement of size of nanoflagellates in statistically meaningful samples. Flow cytometry also permits measurement of intensity of probe binding by cells. Five(More)
(35)S-Methionine and (3)H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus(More)
Siderophores are chelates produced by bacteria as part of a highly specific iron uptake mechanism. They are thought to be important in the bacterial acquisition of iron in seawater and to influence iron biogeochemistry in the ocean. We have identified and quantified two types of siderophores in seawater samples collected from the Atlantic Ocean. These(More)