Learn More
We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino(More)
Thapsigargin, a tumour-promoting sesquiterpene lactone, selectively inhibits the Ca(2+)-ATPase responsible for Ca2+ accumulation by the endoplasmic reticulum (ER). Mobilization of ER-sequestered Ca2+ to the cytosol and to the extracellular fluid subsequently ensues, with concomitant alteration of cellular functions. Thapsigargin was found to serve as a(More)
Thyroglobulin (Tg), the major protein secreted by thyroid epithelial cells and precursor of thyroid hormones, is a large dimeric glycoprotein with multiple disulfide bonds. The folding and assembly of this complex molecule begins in the endoplasmic reticulum (ER) and is likely to involve a variety of reactions catalyzed by molecular chaperones (Kuznetsov,(More)
The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular(More)
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by(More)
Mobilization of Ca2+ from the endoplasmic reticulum (ER) suppresses translational initiation and inhibits post-translational processing and secretion of glycoproteins. This study explores the mechanism whereby ionomycin, a Ca2+ ionophore, and thapsigargin, an ER Ca(2+)-ATPase inhibitor, promote retention of alpha 1-antitrypsin (alpha 1-AT) bearing high(More)
We have previously demonstrated that several endoplasmic reticulum (ER) proteins, including BiP, ERp72, grp94, and protein disulfide isomerase, bind to a denatured thyroglobulin (Tg) affinity column and can be specifically eluted by ATP (Nigam, S.K., Goldberg, A.L., Ho, S., Rohde, M.F., Bush, K.T., and Sherman, M.Y. (1994) J. Biol. Chem. 269, 1744-1749).(More)
HepG2 cells were employed as model system to investigate potential relationships between early protein processing and Ca2+ storage by the endoplasmic reticulum. Ca2+ was required for glycoprotein processing and export by intact cells. The processing and export of alpha 1-antitrypsin and the secretion of complement factor 3, which are glycosylated proteins,(More)
Synthetic oligopeptide inhibitors of metalloendoprotease activity have been shown to block membrane fusion events, to slow transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi, and to perturb Ca2+ homeostasis. Effects of such agents on translational activity, which requires Ca2+ sequestered putatively within the ER, were examined(More)