Learn More
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the(More)
Brain atlases are widely used in experimental neuroscience as tools for locating and targeting specific brain structures. Delineated structures in a given atlas, however, are often difficult to interpret and to interface with database systems that supply additional information using hierarchically organized vocabularies (ontologies). Here we discuss the(More)
Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global(More)
The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings(More)
We propose a new technique, called Spatial Objective Relational Transformation (SORT), as an automated approach for derivation of logical relationships between cortical areas in different brain maps registered in the same Euclidean space. Recently, there have been large amounts of voxel-based three-dimensional structural and functional imaging data that(More)
Non-invasive measuring methods such as EEG/MEG, fMRI and DTI are increasingly utilised to extract quantitative information on functional and anatomical connectivity in the human brain. These methods typically register their data in Euclidean space, so that one can refer to a particular activity pattern by specifying its spatial coordinates. Since each of(More)
In a recent paper (Reid et al., 2009) we introduced a method to calculate optimal hierarchies in the visual network that utilizes continuous, rather than discrete, hierarchical levels, and permits a range of acceptable values rather than attempting to fit fixed hierarchical distances. There, to obtain a hierarchy, the sum of deviations from the constraints(More)
The functional interaction between the brain's two hemispheres includes a unique set of connections between corresponding regions in opposite hemispheres (i.e., homotopic regions) that are consistently reported to be exceptionally strong compared with other interhemispheric (i.e., heterotopic) connections. The strength of homotopic functional connectivity(More)
The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and(More)
Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the same(More)