Giuseppe Zampella

Learn More
The chemokine CXC ligand 8 (CXCL8)/IL-8 and related agonists recruit and activate polymorphonuclear cells by binding the CXC chemokine receptor 1 (CXCR1) and CXCR2. Here we characterize the unique mode of action of a small-molecule inhibitor (Repertaxin) of CXCR1 and CXCR2. Structural and biochemical data are consistent with a noncompetitive allosteric mode(More)
BACKGROUND Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from(More)
The CXC chemokine CXCL8/IL-8 plays a major role in the activation and recruitment of polymorphonuclear (PMN) cells at inflammatory sites. CXCL8 activates PMNs by binding the seven-transmembrane (7-TM) G-protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). (R)-Ketoprofen (1) was previously reported to be a potent(More)
Sialidases or neuramidases are glycoside hydrolases removing terminal sialic acid residues from sialo-glycoproteins and sialo-glycolipids. Viral neuraminidases (NAs) have been extensively characterized and represent an excellent target for antiviral therapy through the synthesis of a series of competitive inhibitors that block the release of newly formed(More)
We have applied density functional theory, using both pure (BP86) and hybrid (B3LYP and B3LYP*) functionals, to investigate structural parameters and reaction energies for nickel(II)-sulfur coordination compounds, as well as for small cluster models of the Ni-SI and Ni-R redox state of [NiFe] hydrogenases. Results obtained investigating experimentally(More)
Intense interest has recently been focused on the biophysics and synthetic models of [FeFe]-hydrogenases. Such studies promise to contribute to the development of nonprecious metal catalysts for the production and utilization of hydrogen. A challenge in current research is the resistance of [FeFe]-hydrogenase models, diiron dithiolato carbonyl complexes, to(More)
Bimetallic silver–gold clusters offer an excellent opportunity to study changes in metallic versus ‘‘ionic’’ properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and(More)
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give(More)
Density functional theory was used to compare reaction pathways for H2 formation and H+ reduction catalyzed by models of the binuclear cluster found in the active site of [Fe] hydrogenases. Terminal H+ binding to an Fe(I)-Fe(I) form, followed by monoelectron reduction and protonation of the di(thiomethyl)amine ligand, can conveniently lead to H2 formation(More)
The reaction of Fe2(S2C2H4)(CO)6 with cis-Ph2PCH=CHPPh2 (dppv) yields Fe2(S2C2H4)(CO)4(dppv), 1(CO)4, wherein the dppv ligand is chelated to a single iron center. NMR analysis indicates that in 1(CO)4, the dppv ligand spans axial and basal coordination sites. In addition to the axial-basal isomer, the 1,3-propanedithiolate and azadithiolate derivatives(More)