Learn More
The chemokine CXC ligand 8 (CXCL8)/IL-8 and related agonists recruit and activate polymorphonuclear cells by binding the CXC chemokine receptor 1 (CXCR1) and CXCR2. Here we characterize the unique mode of action of a small-molecule inhibitor (Repertaxin) of CXCR1 and CXCR2. Structural and biochemical data are consistent with a noncompetitive allosteric mode(More)
BACKGROUND Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from(More)
The CXC chemokine CXCL8/IL-8 plays a major role in the activation and recruitment of polymorphonuclear (PMN) cells at inflammatory sites. CXCL8 activates PMNs by binding the seven-transmembrane (7-TM) G-protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). (R)-Ketoprofen (1) was previously reported to be a potent(More)
Sialidases or neuramidases are glycoside hydrolases removing terminal sialic acid residues from sialo-glycoproteins and sialo-glycolipids. Viral neuraminidases (NAs) have been extensively characterized and represent an excellent target for antiviral therapy through the synthesis of a series of competitive inhibitors that block the release of newly formed(More)
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give(More)
Density functional theory was used to compare reaction pathways for H2 formation and H+ reduction catalyzed by models of the binuclear cluster found in the active site of [Fe] hydrogenases. Terminal H+ binding to an Fe(I)-Fe(I) form, followed by monoelectron reduction and protonation of the di(thiomethyl)amine ligand, can conveniently lead to H2 formation(More)
The di-iron complex Fe2(S2C3H6)(CO)6 (a), one of the simplest functional models of the Fe-hydrogenases active site, is able to electrocatalyze proton reduction. In the present study, the H2 evolving path catalyzed by a has been characterized using density functional theory. It is showed that, in the early stages of the catalytic cycle, a neutral mu-H adduct(More)
The reaction of Fe2(S2C2H4)(CO)6 with cis-Ph2PCH=CHPPh2 (dppv) yields Fe2(S2C2H4)(CO)4(dppv), 1(CO)4, wherein the dppv ligand is chelated to a single iron center. NMR analysis indicates that in 1(CO)4, the dppv ligand spans axial and basal coordination sites. In addition to the axial-basal isomer, the 1,3-propanedithiolate and azadithiolate derivatives(More)
This investigation examines the protonation of diiron dithiolates, exploiting the new family of exceptionally electron-rich complexes Fe(2)(xdt)(CO)(2)(PMe(3))(4), where xdt is edt (ethanedithiolate, 1), pdt (propanedithiolate, 2), and adt (2-aza-1,3-propanedithiolate, 3), prepared by the photochemical substitution of the corresponding hexacarbonyls.(More)
The [FeFe] hydrogenase is a highly sophisticated enzyme for the synthesis of hydrogen via a biological route. The rotated state of the H-cluster in the [Fe(I)Fe(I)] form was found to be an indispensable criteria for an effective catalysis. Mimicking the specific rotated geometry of the [FeFe] hydrogenase active site is highly challenging as no protein(More)