Giuseppe Maria de Peppo

Learn More
Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized(More)
Stem cells divide by asymmetric division and display different degrees of potency, or ability to differentiate into various specialized cell types. Owing to their unique regenerative capacity, stem cells have generated great enthusiasm worldwide and represent an invaluable tool with unprecedented potential for biomedical research and therapeutic(More)
Advances in the fields of stem cell biology, biomaterials, and tissue engineering over the last decades have brought the possibility of constructing tissue substitutes with a broad range of applications in regenerative medicine, disease modeling, and drug discovery. Different types of human stem cells have been used, each presenting a unique set of(More)
BACKGROUND Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. METHODS In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of(More)
  • 1