Giuseppe Lamanna

Learn More
We have developed a straightforward method to prepare 1(st) and 2(nd) generation adamantane-based dendrons, previously called HYDRAmers, bearing at the periphery the anti-inflammatory drug, ibuprofen. The multivalency effect on the drug activity was studied, demonstrating that our multivalent ibuprofen-dendron conjugates exert an enhanced anti-inflammatory(More)
We have developed a straightforward strategy to multimerize an apoptogenic peptide that mimics the natural tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by using adamantane-based dendrons as multivalent scaffolds. The selective binding affinity of the ligands to TRAIL receptor 2 (TR2) was studied by surface plasmon resonance, thus(More)
Stuck together: adenine/carbon nanotube hybrids trigger the formation of controlled-size catalytic silver nanoparticles on the nanotube surface. The catalytic efficiency of the resulting species was assessed in the oxidation of 2-methylhydroquinone to its corresponding benzoquinone, with complete recovery and without loss of activity of the catalyst.
Dendrons constituted of an adamantane core, a focal point and three arms, were synthetized starting from a multifunctional adamantane derivative. Maleimido groups at the periphery of the scaffold were used to covalently attach the peptide called P140, a therapeutic phosphopeptide controlling disease activity in systemic lupus, both in mice and patients.(More)
In this communication we present a new synthetic strategy to different generation Hydra-like dendrons based on tetrafunctionalized adamantane as a building block. The novel dendrons, which we termed HYDRAmers, possess at the periphery and at the central core orthogonal protections that can be exploited for conjugation of targeting ligands, drugs and/or(More)
Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The(More)
The synthesis of small-size dendrons and their grafting at the surface of iron oxide nanoparticles were achieved with the double objective to obtain a good colloidal stability with a mean hydrodynamic diameter smaller than 100 nm and to ensure the possibility of tuning the organic coating characteristics including morphology, functionalities,(More)
  • 1