Giulio Ragusa

  • Citations Per Year
Learn More
During the last years, there has been a continuous interest in the development of cannabinoid receptor ligands that may serve as therapeutic agents and/or as experimental tools. This prompted us to design and synthesize analogues of the CB2 receptor antagonist N-fenchyl-5-(4-chloro-3-methyl-phenyl)-1-(4-methyl-benzyl)-1H-pyrazole-3-carboxamide (SR144528).(More)
New analogues (3a-l) of the previously described α4β2 selective ligand 3-(6-halopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptanes (2a,b) have been synthesized and their binding activity for neuronal acetylcholine receptor subtypes α4β2 and α7 were assayed. Six of these compounds (3a,b,c,j,k and l) showed high affinity and selectivity for α4β2 receptors. The(More)
In the last few years, cannabinoid type-2 receptor (CB2R) selective ligands have shown a great potential as novel therapeutic drugs in several diseases. With the aim of discovering new selective cannabinoid ligands, a series of pyridazinone-4-carboxamides was designed and synthesized, and the new derivatives tested for their affinity toward the hCB1R and(More)
A series of sulfenamide and sulfonamide derivatives was synthesized and evaluated for the affinity at CB1 and CB2 receptors. The N-bornyl-S-(5,6-di-p-tolylpyridazin-3-yl)-sulfenamide, compound 11, displayed good affinity and high selectivity for CB1 receptors (Ki values of 44.6 nM for CB1 receptors and >40 μM for CB2 receptors, respectively). The(More)
  • 1