Giulio Ragazzon

Learn More
Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of(More)
Integrating a matched organic chromophore and a Ru(II) complex with optimized tridentate polypyridine ligands instils reversible electronic energy transfer giving an unusually long room temperature luminescence lifetime (42 μs) without compromising the emission quantum yield.
Gaining detailed information on the structural rearrangements associated with stimuli-induced molecular movements is of utmost importance for understanding the operation of molecular machines. Pulsed electron-electron double resonance (PELDOR) was employed to monitor the geometrical changes arising upon chemical switching of a [2]rotaxane that behaves as an(More)
The realization of artificial molecular motors capable of converting energy into mechanical work is a fascinating challenge of nanotechnology and requires reactive systems that can operate away from chemical equilibrium. This article describes the design and construction of a simple, supramolecular ensemble in which light irradiation causes the directional(More)
Bistable [2]rotaxanes in which the affinities of the two stations can be reversed form the basis of molecular shuttles. Gaining quantitative information on such rotaxanes in which the ring distribution between the two stations is largely nonsymmetric has proven to be very challenging. Herein, we report on two independent experimental methodologies, based on(More)
The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small-molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid-base controlled molecular shuttle, whose ring component(More)
Tris-(N-phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and(More)
We describe the active template effect of a calix[6]arene host towards the alkylation of a complexed pyridylpyridinium guest. The acceleration of the reaction within the cavity is significant and rim-selective, enabling the efficient preparation of rotaxanes with full control of the mutual orientation of their nonsymmetric components.
  • 1