Giulio Gabbiani

Learn More
During the past 20 years, it has become generally accepted that the modulation of fibroblastic cells towards the myofibroblastic phenotype, with acquisition of specialized contractile features, is essential for connective-tissue remodelling during normal and pathological wound healing. Yet the myofibroblast still remains one of the most enigmatic of cells,(More)
The crucial role played by the myofibroblast in wound healing and pathological organ remodeling is well established; the general mechanisms of extracellular matrix synthesis and of tension production by this cell have been amply clarified. This review discusses the pattern of myofibroblast accumulation and fibrosis evolution during lung and liver fibrosis(More)
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile(More)
To evaluate whether alpha-smooth muscle actin (alpha-SMA) plays a role in fibroblast contractility, we first compared the contractile activity of rat subcutaneous fibroblasts (SCFs), expressing low levels of alpha-SMA, with that of lung fibroblasts (LFs), expressing high levels of alpha-SMA, with the use of silicone substrates of different stiffness(More)
A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha-smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha-smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm-1 helped in distinguishing smooth muscle cells from fibroblasts in mixed(More)
The demonstration that fibroblastic cells acquire contractile features during the healing of an open wound, thus modulating into myofibroblasts, has open a new perspective in the understanding of mechanisms leading to wound closure and fibrocontractive diseases. Myofibroblasts synthesize extracellular matrix components such as collagen types I and III and(More)
We have studied the expression of alpha-smooth muscle actin, smooth muscle myosin, and desmin in granulation tissue during the healing of an open wound in the rat by means of electron microscopy and immunohistochemistry, at the light and electron microscopic levels, using specific antibodies directed against these proteins. Important amounts of the three(More)
We have examined the role of mechanical tension in myofibroblast differentiation using two in vivo rat models. In the first model, granulation tissue was subjected to an increase in mechanical tension by splinting a full-thickness wound with a plastic frame. Myofibroblast features, such as stress fiber formation, expression of ED-A fibronectin and(More)
After the first description of the myofibroblast in granulation tissue of an open wound by means of electron microscopy, as an intermediate cell between the fibroblast and the smooth muscle cell, the myofibroblast has been identified both in normal tissues, particularly in locations where there is a necessity of mechanical force development, and in(More)