Giulio Ferrazzi

Learn More
There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or(More)
Optimal contrast to noise ratio of the BOLD signal in neonatal and foetal fMRI has been hard to achieve because of the much longer T2(⁎) values in developing brain tissue in comparison to those in the mature adult brain. The conventional approach of optimizing fMRI sequences would suggest matching the echo time (TE) and the T2(⁎) of the neonatal and foetal(More)
PURPOSE To develop a purpose-built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. METHODS The gradient waveforms in multiband-accelerated single-shot echo planar imaging sequences have been redesigned to(More)
In this paper several novel methods to account for fetal movements during fetal Magnetic Resonance Imaging (fetal MRI) are explored. We show how slice-to-volume reconstruction methods can be used to account for motion adaptively during the scan. Three candidate methods are tested for their feasibility and integrated into a computer simulation of fetal MRI.(More)
  • 1