Giuliano Siligardi

Learn More
Client protein activation by Hsp90 involves a plethora of cochaperones whose roles are poorly defined. A ubiquitous family of stress-regulated proteins have been identified (Aha1, activator of Hsp90 ATPase) that bind directly to Hsp90 and are required for the in vivo Hsp90-dependent activation of clients such as v-Src, implicating them as cochaperones of(More)
The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal(More)
How the ATPase activity of Heat shock protein 90 (Hsp90) is coupled to client protein activation remains obscure. Using truncation and missense mutants of Hsp90, we analysed the structural implications of its ATPase cycle. C-terminal truncation mutants lacking inherent dimerization displayed reduced ATPase activity, but dimerized in the presence of(More)
In vivo activation of client proteins by Hsp90 depends on its ATPase-coupled conformational cycle and on interaction with a variety of co-chaperone proteins. For some client proteins the co-chaperone Sti1/Hop/p60 acts as a "scaffold," recruiting Hsp70 and the bound client to Hsp90 early in the cycle and suppressing ATP turnover by Hsp90 during the loading(More)
The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the(More)
The B23 Circular Dichroism beamline at Diamond Light Source has been operational since 2009 and has seen visits from more than 200 user groups, who have generated large amounts of data. Based on the experience of overseeing the users' progress at B23, four key areas requiring the most assistance are identified: planning of experiments and note-keeping;(More)
ATP hydrolysis by the Hsp90 molecular chaperone requires a connected set of conformational switches triggered by ATP binding to the N-terminal domain in the Hsp90 dimer. Central to this is a segment of the structure, which closes like a "lid" over bound ATP, promoting N-terminal dimerization and assembly of a competent active site. Hsp90 mutants that(More)
Crystallographic, isotopic labeling nmr and transferred nuclear Overhauser effect studies have highlighted the extended conformation as a very important element of secondary structure at the binding site of many peptide/protein complexes including peptide inhibitors-enzymes, B-cell epitopes-antibodies, and T-cell epitopes-major histocompatibility complex(More)
Familial British dementia (FBD) is a rare neurodegenerative disorder and shares features with Alzheimer's disease, including amyloid plaque deposits, neurofibrillary tangles, neuronal loss, and progressive dementia. Immunohistochemical and biochemical analysis of plaques and vascular amyloid of FBD brains revealed that a 4 kDa peptide named ABri is the main(More)
The activities of heparan sulfate (HS) and heparin do not correlate simply with sulfation levels or sequence. The alternative hypothesis, that appropriate charge and conformational characteristics for protein binding and activity can be provided by other sequences in heparan sulfate and, possibly, also in unrelated sulfated polysaccharides, is explored.(More)