Giulia Morra

Learn More
Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is(More)
Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of(More)
Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD) modulate substrate recognition at the Substrate Binding Domain (SBD). Herein, a comparative(More)
BACKGROUND The conversion of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is the key event in prion induced neurodegenerations. This process is believed to involve a multi-step conformational transition from an alpha-helical (PrP(C)) form to a beta-sheet-rich (PrP(Sc)) state. In addition to the conformational difference, PrP(Sc)(More)
BACKGROUND This study concerns the development of a high performance workflow that, using grid technology, correlates different kinds of Bioinformatics data, starting from the base pairs of the nucleotide sequence to the exposed residues of the protein surface. The implementation of this workflow is based on the Italian project infrastructure, that(More)
BACKGROUND Protein-DNA recognition underlies fundamental biological processes ranging from transcription to replication and modification. Herein, we present a computational study of the sequence modulation of internal dynamic properties and of intraprotein networks of aminoacid interactions that determine the stability and specificity of protein-DNA(More)
The recent advances in the in meso crystallization technique for the structural characterization of G-protein coupled receptor (GPCR) proteins have established the usefulness of the lipidic-cubic phases (LCPs) in the field of crystallography of membrane proteins. It is surprising that despite the success of the approach, the molecular mechanisms of the in(More)
Allostery is a general phenomenon in proteins whereby a perturbation at one site reverberates into a functional change at another one, through modulation of its conformational dynamics. Herein, we address the problem of how the molecular signal encoded by a ligand is differentially transmitted through the structures of two homologous PDZ proteins: PDZ2,(More)
Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on(More)
Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective interaction with GPCRs, and to understand the basis for these(More)