Giulia Menichetti

Learn More
The problem of controllability of the dynamical state of a network is central in network theory and has wide applications ranging from network medicine to financial markets. The driver nodes of the network are the nodes that can bring the network to the desired dynamical state if an external signal is applied to them. Using the framework of structural(More)
One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of [Formula: see text] nodes that can be linked in multiple interacting(More)
Multiplex networks describe a large number of systems ranging from social networks to the brain. These multilayer structure encode information in their structure. This information can be extracted by measuring the correlations present in the multiplex networks structure, such as the overlap of the links in different layers. Many multiplex networks are also(More)
We characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network ensembles, integrating gene expression profiling values and protein interaction network topology. In our case studies, network entropy, that by definition estimates the number of possible network instances satisfying the given constraints, can(More)
Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored(More)
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical(More)
Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain(More)
We characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network ensembles, integrating gene expression values and protein interaction networks. The entropy measure estimates the parameter space available to the network ensemble, that can be interpreted as the level of plasticity of the system for high(More)
Giulia Menichetti, Daniel Remondini, Pietro Panzarasa, Raúl J. Mondragón, and Ginestra Bianconi Department of Physics and Astronomy and INFN Sez. Bologna, Bologna University, Viale B. Pichat 6/2 40127 Bologna, Italy School of Business and Management, Queen Mary University of London, London E1 4NS , United Kingdom School of Electronic Engineering and(More)