Giulia Mangione

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density(More)
The unoccupied electronic structure of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin thick films deposited on SiO2/Si(100) native oxide surfaces has been thoroughly studied by combining the outcomes of near-edge X-ray absorption fine structure spectroscopy at the C, N, and F K-edges with those of scalar relativistic zeroth order regular(More)
Copper complexes of tetraphenylporphyrin (H2TPP) and tetrakis(pentafluorophenyl)porphyrin (H2TPP(F)) deposited as thin films on Au(111) have been studied experimentally and theoretically. Core level emissions from C 1s, N 1s, F 1s and Cu 2p as well as valence states of CuTPP and CuTPP(F) have been investigated using surface photoelectron spectroscopy. The(More)
L2,3 spectra of Cu(II) complexes have been simulated by means of time dependent DFT. Besides the agreement between theory and experiment, the adopted approach provided further insights into the use of the Cu(II) L3-edge intensity and position to investigate the Cu-ligand symmetry-restricted covalency and the ligand-field strength.
  • 1