Learn More
The benzothiazinone BTZ043 is a tuberculosis drug candidate with nanomolar whole-cell activity. BTZ043 targets the DprE1 catalytic component of the essential enzyme decaprenylphosphoryl-β-D-ribofuranose-2'-epimerase, thus blocking biosynthesis of arabinans, vital components of mycobacterial cell walls. Crystal structures of DprE1, in its native form and in(More)
Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones (BTZ) and the dinitrobenzamide (DNB) derivatives have been(More)
Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-β-d-ribose 2'-epimerase(More)
The new antitubercular drug candidate 2-[2-S-methyl-1,4-dioxa-8-azaspiro[4.5]dec-8-yl]-8-nitro-6-(trifluoromethyl)-4H-1,3-benzothiazin-4-one (BTZ043) targets the DprE1 (Rv3790) subunit of the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase. To monitor the potential development of benzothiazinone (BTZ) resistance, a total of 240 sensitive and(More)
The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of(More)
Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via(More)
Whole cell based screens to identify hits against Mycobacterium tuberculosis (Mtb), carried out under replicating and non-replicating (NRP) conditions, resulted in the identification of multiple, novel but structurally related spiropiperidines with potent antitubercular properties. These compounds could be further classified into three classes namely(More)
The Editor-in-Chief of " Applied Microbiology and Biotechnology " in agreement with the authors, and the publisher hereby retracts the article entitled "Antituberculars which target decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1: state of art"
The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic(More)
Multidrug resistance is a major barrier in the battle against tuberculosis and still a leading cause of death worldwide. In order to fight this pathogen, two routes are practicable: vaccination or drug treatment. Vaccination against Mycobacterium tuberculosis with the current vaccine Mycobacterium bovis Bacillus Calmette–Guerin is partially successful,(More)