Giulia Da Poian

Learn More
OBJECTIVE Analysis of fetal electrocardiogram (f-ECG) waveforms as well as fetal heart-rate (fHR) evaluation provide important information about the condition of the fetus during pregnancy. A continuous monitoring of f-ECG, for example using the technologies already applied for adults ECG tele-monitor-ing (e.g., Wireless Body Sensor Networks (WBSNs)), may(More)
Due to its possible low-power implementation, Compressed Sensing (CS) is an attractive tool for physiological signal acquisition in emerging scenarios like Wireless Body Sensor Networks (WBSN) and telemonitoring applications. In this work we consider the continuous monitoring and analysis of the fetal ECG signal (fECG). We propose a modification of the(More)
This manuscript addresses the problem of non-invasive fetal Electrocardiogram (ECG) signal acquisition with low power/low complexity sensors. A sensor architecture using the Compressive Sensing (CS) paradigm is compared to a standard compression scheme using wavelets in terms of energy consumption vs. reconstruction quality, and, more importantly, vs.(More)
  • 1