Learn More
How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same(More)
Yeast spindle pole bodies (SPBs) duplicate once per cell cycle by a conservative mechanism resulting in a pre-existing 'old' and a newly formed SPB. The two SPBs of yeast cells are functionally distinct. It is only the SPB that migrates into the daughter cell, the bud, which carries the Bfa1p-Bub2p GTPase-activating protein (GAP) complex, a component of the(More)
The inner centromere-like protein (INCENP) forms a complex with the evolutionarily conserved family of Aurora Bkinases. The INCENP-Aurora complex helps coordinate chromosome segregation, spindle behavior, and cytokinesis during mitosis. INCENP-Aurora associates with kinetochores in metaphase and with spindle microtubules in anaphase, yet the trigger for(More)
The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1-Bub2 guanosine triphosphatase-activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle(More)
In many polarized cells, the accuracy of chromosome segregation depends on the correct positioning of the mitotic spindle. In budding yeast, the spindle positioning checkpoint (SPOC) delays mitotic exit when the anaphase spindle fails to extend toward the mother-daughter axis. However it remains to be established how spindle orientation is translated to(More)
The spindle pole body component Kar1p has a function in nuclear fusion during conjugation, a process known as karyogamy. The molecular role of Kar1p during this process is poorly understood. Here we show that the yeast gamma-tubulin complex-binding protein Spc72p interacts directly with the N-terminal domain of Kar1p, thereby targeting the gamma-tubulin(More)
The budding yeast mitotic exit network (MEN) is a GTPase-driven signal transduction cascade that controls the release of the phosphatase Cdc14p from the nucleolus in anaphase and thereby drives mitotic exit. We show that Cdc14p is partially released from the nucleolus in early anaphase independent of the action of the MEN components Cdc15p, Dbf2p, and(More)
The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein(More)
Cilia formation is a multi-step process that starts with the docking of a vesicle at the distal part of the mother centriole. This step marks the conversion of the mother centriole into the basal body, from which axonemal microtubules extend to form the ciliary compartment. How vesicles are stably attached to the mother centriole to initiate ciliary(More)
A method is presented for isolating osteoblasts from newborn mouse calvaria without the use of digestive enzymes. The procedure is based on the ability of osteoblasts to migrate from bone onto small glass fragments (Jones, S.J., and A. Boyde, 1977, Cell Tissue Res., 184:179-193). The isolated cells were cultured for up to 14 d in Dulbecco's modified Eagle's(More)