Giselbert Hauptmann

Learn More
The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities.(More)
We report the characterization of the zebrafish zp-50 class III POU domain gene. This gene is first activated in the prospective diencephalon after the end of the gastrula period. During somitogenesis, zp-50 is expressed in a very dynamic and complex fashion in all major subdivisions of the central nervous system. After one day of development, zp-50(More)
Serotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT(More)
Corticotropin-releasing hormone (CRH) plays a central role in the physiological regulation of the hypothalamus-pituitary-adrenal/interrenal axis mediating endocrine, behavioral, autonomic, and immune responses to stress. Despite the wealth of knowledge about the physiological roles of CRH, the genetic mechanisms by which CRH neurons arise during development(More)
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect(More)
To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and(More)
We have cloned the zebrafish pou-2 gene which encodes a novel type (class VII) of POU domain. Maternal pou-2 transcripts are initially found in all blastomeres. However, during later cleavage stages pou-2 expression disappears in the marginal cells. Some of their progeny will form the first lineage restricted compartment during zebrafish development.(More)
During early developmental stages, the embryonic vertebrate brain is still relatively simple with few morphological landmarks that would indicate subdivisions in the prosencephalic primordium. To better understand the early organization of the rostral brain of a lower vertebrate, we investigated the embryonic development and regionalization of the fore- and(More)
Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish(More)
Vertebrate class III POU genes are widely expressed in the embryonic and adult central nervous system, where they act as transcriptional regulators of cell- and/or region-specific gene expression. We isolated four zebrafish class III POU genes, named zp-12, zp-23, zp-47 and zp-50. In this study, we examined the developmental expression patterns of the(More)