Learn More
The Drosophila sex determination gene Sex-lethal controls its own expression and the expression of downstream target genes such as transformer by regulating RNA splicing. Genetic and molecular studies have established that Sxl requires the product of another gene, snf, to autoregulate the splicing of its own transcripts. snf has recently been shown to(More)
In C. elegans, mRNA production is initially repressed in the embryonic germline by a protein unique to C. elegans germ cells, PIE-1. PIE-1 is degraded upon the birth of the germ cell precursors, Z2 and Z3. We have identified a chromatin-based mechanism that succeeds PIE-1 repression in these cells. A subset of nucleosomal histone modifications, methylated(More)
The primary sex determination signal, the X chromosome-to-autosome (X/A) ratio, controls the choice of sexual identity in the Drosophila melanogaster embryo by regulating the activity of the early promoter of the Sex-lethal gene, Sxl-Pe. This promoter is activated in females (2X/2A), while it remains off in males (1X/2A). Promoter activation in females is(More)
nanos (nos) specifies posterior development in the Drosophila embryo by repressing the translation of maternal hb mRNA. In addition to this somatic function, nos is required in the germline progenitors, the pole cells, to establish transcriptional quiescence. We have previously reported that nos is required to keep the Sex-lethal establishment promoter,(More)
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80(More)
The primitive gonad of the Drosophila embryo is formed from two cell types, the somatic gonad precursor cells (SGPs) and the germ cells, which originate at distant sites. To reach the SGPs the germ cells must undergo a complex series of cell movements. While there is evidence that attractive and repulsive signals guide germ cell migration through the(More)
It has previously been shown that germ cells in embryos derived from nos mutant mothers do not migrate to the primitive gonad and prematurely express several germline-specific markers. In the studies reported here, we have traced these defects back to the syncytial blastoderm stage. We show that pole cells in nos embryos fail to establish/maintain(More)
In Drosophila melanogaster, the germline precursor cells, i.e. pole cells, are formed at the posterior of the embryo. As observed for newly formed germ cells in many other eukaryotes, the pole cells are distinguished from the soma by their transcriptional quiescence. To learn more about the mechanisms involved in establishing quiescence, we ectopically(More)
The RNA-induced silencing complex (RISC) or the RISC complex mediates RNAi and is comprised of proteins belonging to the dicer and Argonaute family proteins. Here we show that Argonaute-2 (ago-2) is required for proper nuclear migration, pole cell formation, and cellularization during the early stages of embryonic development in Drosophila. We have traced(More)
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression(More)