Giridhara Rao Jayandharan

Learn More
Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV(More)
Haemophilia A (HA) is an X-linked bleeding disorder caused by diverse mutations in the human coagulation factor VIII (FVIII) gene. We have analysed DNA from 109 unrelated Indian patients with HA for their FVIII gene defects. Among these patients 89 (82%) had severe (FVIII:C <1%) HA, 11 (10%) had moderate (FVIII:C 1-5%) HA and nine (8%) had mild (FVIII:C(More)
The objective of this study was to assess the frequency of factor VIII (FVIII) gene intron 1 and intron 22 inversions and the informativeness of polymorphic markers for the genetic diagnosis of patients with haemophilia A (HA). Fifty unrelated patients with HA were first assessed for the intron 1 and intron 22 inversion mutations. Inversion-negative(More)
Vectors based on adeno-associated virus serotype 2 (AAV2) have been used extensively in many gene-delivery applications, including several successful clinical trials for one type of Leber congenital amaurosis in the retina. Many studies have focused on improving AAV2 transduction efficiency and cellular specificity by genetically engineering its capsid. We(More)
Elimination of specific surface-exposed single tyrosine (Y) residues substantially improves hepatic gene transfer with adeno-associated virus type 2 (AAV2) vectors. Here, combinations of mutations in the seven potentially relevant Y residues were evaluated for further augmentation of transduction efficiency. These mutant capsids packaged viral genomes to(More)
AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene(More)
We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein(More)
Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa(More)
Adeno-associated viral (AAV) vectors are the most efficient in vivo gene transfer tools for gene therapy applications. Efforts have been made to translate encouraging results in small animal models to human patients. However, the need for large quantities of vector for clinical application remains a great challenge. Developing novel AAV vectors with(More)
Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known(More)