Giovanni Viglietta

Learn More
We study the rendezvous problem for two robots moving in the plane (or on a line). Robots are autonomous, anonymous, oblivious, and carry colored lights that are visible to both. We consider deterministic distributed algorithms in which robots do not use distance information, but try to reduce (or increase) their distance by a constant factor, depending on(More)
Consider a finite set of identical computational entities that can move freely in the Euclidean plane operating in Look-Compute-Move cycles. Let p(t) denote the location of entity p at time t; entity p can see entity q at time t if at that time no other entity lies on the line segment p(t)q(t). We consider the basic problem called Mutual Visibility:(More)
Shape formation (or pattern formation) is a basic distributed problem for systems of computational mobile entities. Intensively studied for systems of autonomous mobile robots, it has recently been investigated in the realm of programmable matter, where entities are assumed to be small and with severely limited capabilities. Namely, it has been studied in(More)
The gathering (or multi-agent rendezvous) problem requires a set of mobile agents, arbitrarily positioned at different nodes of the network to group within finite time at the same location, not fixed in advanced. The extensive existing literature on this problem shares the same fundamental assumption that the topological structure does not change during the(More)
The Meeting problem for k ≥ 2 searchers in a polygon P (possibly with holes) consists in making the searchers move within P , according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both(More)
In this paper we investigate the computational power of a set of mobile robots with limited visibility. At each iteration, a robot takes a snapshot of its surroundings, uses the snapshot to compute a destination point, and it moves toward its destination. Each robot is punctiform and memoryless, it operates in R, it has a local reference system independent(More)
We consider the problem of simulating traditional population protocols under weaker models of communication, which include one-way interactions (as opposed to two-way interactions) and omission faults (i.e., failure by an agent to read its partner’s state during an interaction), which in turn may be detectable or undetectable. We focus on the impact of a(More)
Shape formation has been recently studied in distributed systems of programmable particles. In this paper we consider the shape recovery problem of restoring the shape when f of the n particles have crashed. We focus on the basic line shape, used as a tool for the construction of more complex configurations. We present a solution to the line recovery(More)