Learn More
Nova proteins are a neuron-specific alternative splicing factors. We have combined bioinformatics, biochemistry and genetics to derive an RNA map describing the rules by which Nova proteins regulate alternative splicing. This map revealed that the position of Nova binding sites (YCAY clusters) in a pre-messenger RNA determines the outcome of splicing. The(More)
Fragile-X mental retardation is caused by loss of function of a single gene encoding the Fragile-X mental retardation protein, FMRP, an RNA-binding protein that harbors two KH-type and one RGG-type RNA-binding domains. Previous studies identified intramolecular G-quartet RNAs as high-affinity targets for the RGG box, but the relationship of RNA binding to(More)
Fragile X mental retardation protein (FMRP) is an RNA binding protein encoded by the gene FMR1, whose expression is impaired in patients with fragile X mental retardation. The association of FMRP with polyribosomes in non-neural cell lines has previously suggested that FMRP is involved in translational regulation. However, the relevance of these studies to(More)
We have combined genetic and biochemical approaches to analyze the function of the RNA-binding protein Nova-1, the paraneoplastic opsoclonus-myoclonus ataxia (POMA) antigen. Nova-1 null mice die postnatally from a motor deficit associated with apoptotic death of spinal and brainstem neurons. Nova-1 null mice show specific splicing defects in two inhibitory(More)
Synapsins, a family of synaptic vesicle proteins, play a crucial role in the regulation of neurotransmission and synaptogenesis. They have been identified in a variety of invertebrate and vertebrate species, including human, rat (Rattus norvegicus), cow (Bos taurus), longfin squid (Loligo pealei), and fruit fly (Drosophila melanogaster). Here, synapsins(More)
1. Synapsin I, a major synaptic vesicle (SV)-associated phosphoprotein, is involved in the regulation of neurotransmitter release and synapse formation. By binding to both phospholipid and protein components of SV with high affinity and in a phosphorylation-dependent fashion, synapsin I is believed to cluster SV and to attach them to the actin-based(More)
PIWI-interacting RNAs (piRNAs) are a large family of small, single-stranded, non-coding RNAs present throughout the animal kingdom. They form complexes with several members of the PIWI clade of Argonaute proteins and carry out regulatory functions. Their best established biological role is the inhibition of transposon mobilization, which they enforce both(More)
The closely related homeodomain containing genes, Phox2a and Phox2b, are essential for neuronal specification and differentiation within discrete subsets of neurons during vertebrate embryogenesis. We have isolated Xenopus Phox2 homologs, termed Xphox2a and Xphox2b, and characterized their expression during early development. In addition, we have(More)
The effects of 1-[2-(4-fluorophenyl)cyclohexyl]-2-[4-(3-phenylalkyl)-piperazin -1-yl]- ethanol, LU52396, on a) Ca2+ influx across the plasma membrane and b) Ca2+ mobilization from intracellular rapidly-exchanging Ca2+ stores were investigated in HeLa cells and in isolated microsomal fractions derived from the cerebellum and the skeletal muscle. LU52396 was(More)
There has been a great dealt of discussion as to the clinical significance of E.E.G. 14-6 per second positive spikes (14-6 PS), a short burst lasting one second or less which occurs during light sleep in monopolar recordings, mainly in the posterior temporal regions and usually involving the parietal and occipital regions as well, for the most part in(More)
  • 1