Giovanni Mattei

Learn More
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and(More)
Generating, controlling, and monitoring spin effects in conducting nanostructures by using light is a highly important scientifi c and technological challenge. [ 1 , 2 ] Moreover the possibility of coupling the optical and magnetic properties in nanostructured materials can lead to the creation of novel devices with photonic and magnetic properties. Control(More)
Metal (Au, Pt, Au@Pt) and metal oxide (TiO(2)) nanoparticles are synthesized with colloidal techniques and subsequently used as nanocrystal inks for thin films deposition. The optical properties of Au colloids are strongly influenced by both Pt and TiO(2) interfaces: while platinum causes a damping and a blue-shift of the Au Surface Plasmon Resonance (SPR)(More)
We have developed an Ir/Si multilayer for extreme ultraviolet (EUV) applications. Normal incidence reflectance measurements of a prototype film tuned to 30 nm wavelength show superior performance relative to a conventional Mo/Si multilayer structure; we also find good stability over time. Transmission electron microscopy and electron dispersive x-ray(More)
The quest for efficient ways of modulating localized surface plasmon resonance is one of the frontiers in current research in plasmonics; the use of a magnetic field as a source of modulation is among the most promising candidates for active plasmonics. Here we report the observation of magnetoplasmonic modes on colloidal gold nanoparticles detected by(More)
A full-interaction electromagnetic approach is applied to interpret the local- and far-field properties of AuAg alloy nanoplanets (i.e. a central cluster surrounded by small "satellite" clusters very close to its surface) fabricated in silica by ion implantation and ion irradiation techniques. Optical extinction spectroscopy reveals a large plasmon redshift(More)
SiO(2) and TiO(2) dielectric nanoparticles are arranged in linear arrays, supporting collective Bragg modes, and employed as dielectric nanoantennae. Electrodynamic calculations show that strong, tunable, and lossless light extraction is obtained in a wide spectral range, including UV, visible, and near-infrared regions, in opposition to poor enhancement(More)
We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In(More)
Plasmonic sensors based on ordered arrays of nanoprisms are optimized in terms of their geometric parameters like size, height, aspect ratio for Au, Ag or Au0.5-Ag0.5 alloy to be used in the visible or near IR spectral range. The two figures of merit used for the optimization are the bulk and the surface sensitivity: the first is important for optimizing(More)