Giovanni Coppola

Learn More
Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be(More)
Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. A whole-genome, exon-level expression analysis of 13 regions from left and right sides of the mid-fetal human brain revealed that 76% of genes are expressed, and 44% of these are(More)
OBJECTIVES To determine whether TMEM106B single nucleotide polymorphisms (SNPs) are associated with frontotemporal lobar degeneration (FTLD) in patients with and without mutations in progranulin (GRN) and to determine whether TMEM106B modulates GRN expression. METHODS We performed a case-control study of 3 SNPs in TMEM106B in 482 patients with clinical(More)
Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating(More)
Transcriptional dysregulation has emerged as a core pathologic feature of Huntington's disease (HD), one of several triplet-repeat disorders characterized by movement deficits and cognitive dysfunction. Although the mechanisms contributing to the gene expression deficits remain unknown, therapeutic strategies have aimed to improve transcriptional output via(More)
mRNAs are transported, localized, and translated in axons of sensory neurons. However, little is known about the full repertoire of transcripts present in embryonic and adult sensory axons and how this pool of mRNAs dynamically changes during development. Here, we used a compartmentalized chamber to isolate mRNA from pure embryonic and adult sensory axons(More)
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to(More)
The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has(More)
Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We(More)
We have established functions of the stimulus-dependent MAPKs, ERK1/2 and ERK5, in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent, and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest(More)