Huy Q. Nguyen6
Gregory C. Rogers6
6Huy Q. Nguyen
6Gregory C. Rogers
4Joseph E. Klebba
4Julianna Bozler
3Tom A. Hartl
Learn More
Telomeres are functionally distinct from ends generated by chromosome breakage, in that telomeres, unlike double-strand breaks, are insulated from recombination with other chromosomal termini [1]. We report that the Ku heterodimer and the Rad50/Mre11/Xrs2 complex, both of which are required for repair of double-strand breaks [2-5], have separate roles in(More)
The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although "whole"-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate(More)
Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we(More)
The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that(More)
  • Daniel W. Buster, Scott G. Daniel, Huy Q. Nguyen, Sarah L. Windler, Lara C. Skwarek, Maureen Peterson +7 others
  • 2013
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that(More)
BACKGROUND Upstream open reading frames (uORFs) are elements found in the 5'-region of an mRNA transcript, capable of regulating protein production of the largest, or major ORF (mORF), and impacting organismal development and growth in fungi, plants, and animals. In Drosophila, approximately 40% of transcripts contain upstream start codons (uAUGs) but there(More)
  • Helen F. Smith, Meredith A. Roberts, Huy Q. Nguyen, Maureen Peterson, Tom A. Hartl, Xiao-Jun Wang +3 others
  • 2013
Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo(More)
The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate(More)
Behavioral adaptation to environmental threats and subsequent social transmission of adaptive behavior has evolutionary implications. In Drosophila, exposure to parasitoid wasps leads to a sharp decline in oviposition. We show that exposure to predator elicits both an acute and learned oviposition depression, mediated through the visual system. However,(More)