Learn More
Optical localized states are usually defined as self-localized bistable packets of light, which exist as independently controllable optical intensity pulses either in the longitudinal or transverse dimension of nonlinear optical systems. Here we demonstrate experimentally and analytically the existence of longitudinal localized states that exist(More)
Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off and to control their location and motion by applying laser pulses(More)
Cavity solitons (CS) are localized structures appearing as single intensity peaks in the homogeneous background of the field emitted by a nonlinear (micro)resonator. In real devices, their position is strongly influenced by the presence of defects in the device structure. In this Letter we show that the interplay between these defects and a phase gradient(More)
In a semiconductor laser with saturable absorber, solitons may spontaneously drift and/or oscillate. We study three different regimes characterized by strong intensity oscillations, both periodic and chaotic. We show that (i) soliton dynamics may be similar to that of passively Q-switched lasers, (ii) solitons may drift and oscillate simultaneously, and(More)
In this paper we study the dynamics of the intracavity field, carriers and lattice temperature in externally driven semiconductor microcavities. The combination/competition of the different time-scales of the dynamical variables together with diffraction and carrier/thermal diffusions are responsible for new dynamical behaviors. We report here the(More)
Due to current crowding, the laser emission in medium size VCSELs starts at threshold in a linearly polarized “flower mode” concentrated at the laser aperture periphery. Introducing a holding beam with orthogonal liner polarization we observe localized structure in the center of the device in the orthogonal polarization while the VCSEL keeps(More)
We theoretically demonstrate the realization of a complete canonical set of all-optical logic gates (AND, OR, NOT), with a persistent (stored) output, by combining propagative spatial solitons in a photorefractive crystal and dissipative cavity solitons in a downstream broad-area vertical cavity surface emitting laser (VCSEL). The system uses same-color,(More)
We experimentally demonstrate the existence of nondispersive solitary waves associated with a 2π phase rotation in a strongly multimode ring semiconductor laser with coherent forcing. Similarly to Bloch domain walls, such structures host a chiral charge. The numerical simulations based on a set of effective Maxwell-Bloch equations support the experimental(More)
Excitable systems (known for their all or nothing and well calibrated response to external perturbations) are obvious candidates for the handling of binary data. In this contribution, we demonstrate experimentally that a semiconductor laser based excitable system placed in an optical feedback loop can act as a buffer for optical data. In the process, we(More)
We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.