Giovanna Randine

Learn More
Methylmercury (MeHg) affects several parameters of cholinergic function. These alterations are thought to play a role in MeHg neurotoxicity. In vitro experiments have indicated that MeHg acts as a strong competitive inhibitor of radioligand binding to muscarinic cholinergic receptors (mAChRs) in rat brain. Furthermore, rat brain mAChRs share several(More)
The individual and joint effects of methylmercury (MeHg; 1 mg/kg body weight/day, GD7-PND7) and PCB153 (20 mg/kg body weight/day, GD10-GD16), administered orally to rat dams, were explored in 21-day-old rat offspring brain in terms of monoamine oxidase B (MAO-B) activity and regional content of dopamine (DA), serotonin (5-HT), 5-hydroxy-indole-3-acetic acid(More)
The developing nervous system is thought to be particularly sensitive to polychlorinated biphenyls (PCBs) present as food contaminants together with methylmercury (MeHg). Effects of perinatal co-exposure to PCB153 and MeHg on brain cholinergic muscarinic receptors (MRs) were investigated by saturation binding studies in mature and immature rats. MeHg alone(More)
Exposure of mature rat cerebellar granule neurons to non-depolarizing conditions (5 mM K+) for 24 h resulted in the onset of apoptosis. NMDA, forskolin, carbachol and GABA attenuated low K+-induced toxicity, although to a different extent, with NMDA and GABA being the most effective agents. When cells were co-exposed for 24 h to ethanol, the survival(More)
  • 1