Giovanna Quarto

Learn More
Breast density is a recognized strong and independent risk factor for breast cancer. We propose the use of time-resolved transmittance spectroscopy to estimate breast tissue density and potentially provide even more direct information on breast cancer risk. Time-resolved optical mammography at seven wavelengths (635 to 1060 nm) is performed on 49 subjects.(More)
The optical characterization of malignant and benign breast lesions is presented. Time-resolved transmittance measurements were performed in the 630-1060 nm range by means of a 7-wavelength optical mammograph, providing both imaging and spectroscopy information. A total of 62 lesions were analyzed, including 33 malignant and 29 benign lesions. The(More)
A mechanically switchable solid inhomogeneous phantom simulating localized absorption changes was developed and characterized. The homogeneous host phantom was made of epoxy resin with black toner and titanium dioxide particles added as absorbing and scattering components, respectively. A cylindrical rod, movable along a hole in the block and made of the(More)
Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and(More)
BACKGROUND Breast tissue composition is recognized as a strong and independent risk factor for breast cancer. It is a heritable feature, but is also significantly affected by several other elements (e.g., age, menopause). Nowadays it is quantified by mammographic density, thus requiring the use of ionizing radiation. Optical techniques are absolutely(More)
Time domain diffuse optical mammography is performed at 4 to 7 wavelengths (635–1060 nm) for the detection and identification of breast lesions, and for the non-invasive assessment of breast density, a well-known risk factor for cancer development.
We propose a simple and reliable solid phantom for mimicking localized absorption changes within a diffusive medium. The phantom is based on the Equivalence Relation stating that any realistic absorption inhomogeneity can be mimicked by a totally absorbing sphere of adequate volume. Applying this concept, we constructed a solid phantom holding a movable(More)
Several techniques are being investigated as a complement to screening mammography, to reduce its false-positive rate, but results are still insufficient to draw conclusions. This initial study explores time domain diffuse optical imaging as an adjunct method to classify non-invasively malignant vs benign breast lesions. We estimated differences in tissue(More)
Breast density is a recognized strong and independent risk factor for developing breast cancer. At present, breast density is assessed based on the radiological appearance of breast tissue, thus relying on the use of ionizing radiation. We have previously obtained encouraging preliminary results with our portable instrument for time domain optical(More)