Giovanna Jona-Lasinio

Learn More
We formulate a dynamical fluctuation theory for stationary nonequilibrium states (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machlup theory in(More)
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation principle for a space-time fluctuation j of the empirical current with a rate functional I(j). We then estimate the probability of a fluctuation of the(More)
We present a review of recent work on the statistical mechanics of non equilibrium processes based on the analysis of large deviations properties of microscopic systems. Stochastic lattice gases are non trivial models of such phenomena and can be studied rigorously providing a source of challenging mathematical problems. In this way, some principles of wide(More)
We study current fluctuations in lattice gases in the hydrodynamic scaling limit. More precisely, we prove a large deviation principle for the empirical current in the symmetric simple exclusion process with rate functional I. We then estimate the asymptotic probability of a fluctuation of the average current over a large time interval and show that the(More)
Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per unit of time. If we consider transformations of such states that are realized by letting the driving depend on time, the amount of energy dissipated in an unbounded time window then becomes infinite. Following the general proposal by Oono and Paniconi and(More)
We analyze the dynamical evolution of the resonant tunneling of an ensemble of electrons through a double barrier in the presence of the self-consistent potential created by the charge accumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to oscillations of the stored charge and of the transmitted and reflected(More)
When a large amount of spatial data is available computational and mod-eling challenges arise and they are often labeled as " big n problem ". In this work we present a brief review of the literature. Then we focus on two approaches, respectively based on stochastic partial differential equations and integrated nested Laplace approximation, and on the(More)
The analysis and forecasting of extreme climatic events has become increasingly relevant to planning effective financial and food-related interventions in third-world countries. Natural disasters and climate change, both large and small scale, have a great impact on non-industrialized populations who rely exclusively on activities such as crop production,(More)
The ecological status classification of aquatic ecosystems using biological indices requires a number of steps, including the description and standardisation of the indices’ natural variability. Here, we address this point with reference to selected Mediterranean and Black Sea lagoons, using benthic macroinvertebrates in order to: (i) explore the drivers(More)
  • 1