Learn More
Seizures in patients presenting with mesial temporal lobe epilepsy result from the interaction among neuronal networks in limbic structures such as the hippocampus, amygdala and entorhinal cortex. Mesial temporal lobe epilepsy, one of the most common forms of partial epilepsy in adulthood, is generally accompanied by a pattern of brain damage known as(More)
The effects of human recombinant tumor necrosis factor (TNF-alpha) on the synaptic transmission were studied in rat hippocampal slices by using extracellular field potential recordings. Population spikes and/or excitatory postsynaptic potentials were extracellularly recorded in hippocampus CA1 region from stratum pyramidale and stratum radiatum,(More)
Several cytokines have short-term effects on synaptic transmission and plasticity that are thought to be mediated by the activation of intracellular protein kinases. We have studied the effects of interleukin-6 (IL-6) on the expression of paired pulse facilitation (PPF), posttetanic potentiation (PTP), and long-term potentiation (LTP) in the CA1 region of(More)
A combination of darkfield techniques and infrared videomicroscopy was used to measure the intrinsic optical signal (IOS) in slices of adult rat neocortex. The IOS, which reflects changes in light transmittance and scattering, provides a means of studying the spread of neuronal excitation and its modulation with high sensitivity and spatial resolution. The(More)
PURPOSE We used field-potential recordings in slices of rat cerebral cortex along with whole-cell patch recordings from rat neocortical cells in culture to test the hypothesis that the antiepileptic drug (AED) lamotrigine (LTG) modulates K+-mediated, hyperpolarizing currents. METHODS Extracellular field-potential recordings were performed in neocortical(More)
Cytokines are extracellular mediators that have been reported to affect neurotransmitter release and synaptic plasticity phenomena when applied in vitro. Most of these effects occur rapidly after the application of the cytokines and are presumably mediated through the activation of protein phosphorylation processes. While many cytokines have an inflammatory(More)
Extracellular field potential recordings were performed in the CA1 subfield of hippocampal slices obtained from Wistar rats aged 2-38 days. When the brain tissue was maintained at 35 degrees-36 degrees C (values obtained in the tissue chamber well), single-shock orthodromic stimuli elicited a response in the stratum pyramidale that consisted of a single(More)
We used sharp-electrode, intracellular recordings in an in vitro brain slice preparation to study the excitability of neocortical neurons located in the deep layers (>900 microm from the pia) of epileptic (180-210-days old) Wistar Albino Glaxo/Rijswijk (WAG/Rij) and age-matched, non-epileptic control (NEC) rats. Wistar Albino Glaxo/Rijswijk rats represent a(More)
The effects of rat interferon (IFN) on the electrically-induced potentiation of the synaptic transmission were studied in rat hippocampal slices by using extracellular field potential recordings. The treatment with rat IFN (120 U/ml) reduced the size of short-term potentiation (STP) and suppressed long-term potentiation (LTP). These IFN-induced effects were(More)
Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABA(B) receptors contribute to neocortical hyperexcitability in these animals. By using(More)