Giovanbattista Grande

Learn More
The ability of inhibitory synaptic inputs to dampen the excitability of motoneurons is augmented when persistent inward currents (PICs) are activated. This amplification could be due to an increase in the driving potential of inhibitory synapses or the deactivation of the channels underlying PICs. Our goal was to determine which mechanism leads to the(More)
In some motoneurons, L-type Ca2+ channels that partly mediate persistent inward currents (PICs) have been estimated to be arranged in 50- to 200-microm-long discrete regions in the dendrites, centered 100 to 400 microm from the soma. As a consequence of this nonuniform distribution, the interaction between synaptic inputs to motoneurons and these channels(More)
Reliable neuronal spiking is critical for a myriad of computations performed by neural circuits. This is particularly evident for sound localization cues in the auditory brainstem circuits that detect timing and intensity differences of sounds arriving at two ears. The calyx of Held-principal neuron synapse in the medial nucleus of the trapezoid body (MNTB)(More)
Excitatory and inhibitory synapses may control neuronal output through a push-pull mechanism--that is, increases in excitation are coupled to simultaneous decreases in inhibition or vice versa. This pattern of activity is characteristic of excitatory and inhibitory vestibulospinal axons that mediate vestibulocollic reflexes. Previously, we showed that(More)
Current descriptions of the organization of synapses on the dendritic trees of spinal motoneurons indicate that the inputs are arranged in several patterns: some are widely distributed; some are distributed to proximal dendrites; others are distributed based on the trajectory of the dendrites. However, the principles governing the organization of synapses(More)
Grande G, Bui TV, Rose PK. Estimates of the location of L-type Ca channels in motoneurons of different size: a computational study. J Neurophysiol 97: 4023–4035, 2007. First published April 11, 2007; doi:10.1152/jn.00044.2007. In the presence of monoamines, L-type Ca channels on the dendrites of motoneurons contribute to persistent inward currents (PICs)(More)
Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are(More)
Neurotransmitter release depends critically on close spatial coupling of Ca(2+) entry to synaptic vesicles at the nerve terminal; however, the molecular substrates determining their physical proximity are unknown. Using the calyx of Held synapse, where "microdomain" coupling predominates at immature stages and developmentally switches to "nanodomain"(More)
In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of(More)