Giorgio Russo

Learn More
BACKGROUND Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of(More)
Target volume delineation of Positron Emission Tomography (PET) images in radiation treatment planning is challenging because of the low spatial resolution and high noise level in PET data. The aim of this work is the development of an accurate and fast method for semi-automatic segmentation of metabolic regions on PET images. For this purpose, an algorithm(More)
The aim of the present study was to evaluate the changes in cervical cancer glucose metabolism for different levels of cellular differentiation. The metabolic activity was measured by standardized uptake value (SUV), SUV normalized to lean body mass, metabolic tumor volume and total lesion glycolysis using fluorine‑18 fluorodeoxyglucose positron emission(More)
An algorithm for delineating complex head and neck cancers in positron emission tomography (PET) images is presented in this article. An enhanced random walk (RW) algorithm with automatic seed detection is proposed and used to make the segmentation process feasible in the event of inhomogeneous lesions with bifurcations. In addition, an adaptive probability(More)
PURPOSE Magnetic Resonance guided Focused UltraSound (MRgFUS) represents a non-invasive surgical approach that uses thermal ablation to treat uterine fibroids. After the MRgFUS treatment, an operator must manually segment the treated fibroid areas to evaluate the NonPerfused Volume (NPV). This manual approach is operator-dependent, introducing issues of(More)