Giorgio Grioli

Learn More
This paper presents design and performance of a novel joint based actuator for a robot run by variable stiffness actuation, meant for systems physically interacting with humans. This new actuator prototype (VSA-II) is developed as an improvement over our previously developed one reported in [9], where an optimal mechanical-control co-design principle(More)
In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e.(More)
Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes(More)
To match the richness and complexity of the sensory and motor functionalities of a human hand with a robust and economically reasonable robotic device remains one of the hardest challenges in the field. Previous work has explored the possibility to exploit insight from neuroscientific results on postural correlation patterns (synergies) taming the(More)
We propose a prototype of a Variable Stiffness Actuator (VSA) conceived with low cost as its first goal. This approach was scarcely covered in past literature. Many recent works introduced a large number of actuators with adjustable stiffness, optimized for a wide set of applications. They cover a broad range of design possibilities, but their availability(More)
One of the motivations behind the development of humanoid robots is the will to comply with, and fruitfully integrate in the human environment, a world forged by humans for humans, where the importance of the hand shape dominates prominently. This paper presents the novel hand under-actuation framework which goes under the name of synergies. In particular(More)
The need for adaptability to the environment, energy conservation, and safety during physical interaction with humans of many advanced robotic applications has prompted the development of a number of Variable Stiffness Actuators (VSA). These have been implemented in a variety of ways, using different transduction technologies (electromechanical, pneumatic,(More)
In this paper, a novel synergy driven teleimpedance controller for the Pisa-IIT SoftHand is presented. Towards the development of an efficient, robust, and low-cost hand prothesis, the Pisa-IIT SoftHand is built on the motor control principle of synergies, through which the immense complexity of the hand is simplified into distinct motor patterns. As the(More)
In this paper, we present the Pisa/IIT SoftHand with myoelectric control as a synergy-driven approach for a prosthetic hand. Commercially available myoelectric hands are more expensive, heavier, and less robust than their body-powered counterparts; however, they can offer greater freedom of motion and a more aesthetically pleasing appearance. The Pisa/IIT(More)
While it is known that softness discrimination relies on both kinesthetic and cutaneous information, relatively little work has been done on the realization of haptic devices replicating the two cues in an integrated and effective way. In this paper, we first discuss the ambiguities that arise in unimodal touch, and provide a simple intuitive explanation in(More)