Giorgio Giacomo Galli

Learn More
The Hippo-signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo pathway activity is essential for the maintenance of the(More)
The PRDM family has recently spawned considerable interest as it has been implicated in fundamental aspects of cellular differentiation and exhibits expanding ties to human diseases. The PRDMs belong to the SET domain family of histone methyltransferases, however, enzymatic activity has been determined for only few PRDMs suggesting that they act by(More)
The role of the Hippo pathway effector YAP1 in soft tissue sarcomas is poorly defined. Here we report that YAP1 activity is elevated in human embryonal rhabdomyosarcoma (ERMS). In mice, sustained YAP1 hyperactivity in activated, but not quiescent, satellite cells induces ERMS with high penetrance and short latency. Via its transcriptional program with(More)
We present a theoretical study of solid CO2 up to 50 GPa and 1500 K using first-principles calculations. In this pressure-temperature range, interpretations of recent experiments have suggested the existence of CO2 phases which are intermediate between molecular and covalent-bonded solids. We reexamine the concept of intermediate phases in the CO2 phase(More)
PRDM proteins are tissue-specific transcription factors often deregulated in diseases, particularly in cancer where different members have been found to act as oncogenes or tumor suppressors. PRDM5 is a poorly characterized member of the PRDM family for which several studies have reported a high frequency of promoter hypermethylation in cancer types of(More)
PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of(More)
The dissociation of water under pressure is investigated with a series of ab initio molecular dynamics simulations at thermodynamic conditions close to those obtained in shock wave experiments. We find that molecular dissociation occurs via a bimolecular process similar to ambient conditions, leading to the formation of short-lived hydronium ions. Up to(More)
PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse(More)
Lattice thermal conductivity !l of Si with nanometer-sized pores along the #001$ direction is calculated as a function of pore diameter !dp" and pore spacing !ds" by employing a molecular dynamics approach. Our results show that !l across pores is smaller than the bulk value by over two orders of magnitude at room temperature, and that it decreases(More)
The Hippo/YAP signaling pathway is a crucial regulator of tissue growth, stem cell activity, and tumorigenesis. However, the mechanism by which YAP controls transcription remains to be fully elucidated. Here, we utilize global chromatin occupancy analyses to demonstrate that robust YAP binding is restricted to a relatively small number of distal regulatory(More)