Giordana Feriotto

Learn More
Screening a cDNA library from human skeletal muscle and cardiac muscle with a cDNA probe derived from junctin led to the isolation of two groups of cDNA clones. The first group displayed a deduced amino acid sequence that is 84% identical to that of dog heart junctin, whereas the second group had a single open reading frame that encoded a polypeptide with a(More)
OBJECTIVE To identify microRNAs (miRNAs) differentially expressed at early stages of gestation (12-14 weeks) in the serum of pregnant women, who later developed severe preeclampsia (sPE) in the third trimester of pregnancy (n = 24) compared to women with normal pregnancy (n = 24). MATERIALS AND METHODS Sera from 12-14-week-gestation whole blood were(More)
A review is presented demonstrating that biospecific interaction analysis, using surface plasmon resonance (SPR) and biosensor technologies is a simple, rapid, and automatable approach to detect genetically modified organisms (GMOs). Using SPR, we were able to monitor in real-time the hybridization between oligonucleotide or polymerase chain reaction(More)
Biospecific interaction analysis (BIA) was performed using surface plasmon resonance (SPR) and biosensor technologies to detect genetically modified Roundup Ready soybean gene sequences. We first immobilized, on SA sensor chips, single-stranded biotinylated oligonucleotides containing soybean lectin and Roundup Ready gene sequences, and the efficiency of(More)
In this paper we demonstrate that peptide nucleic acids (PNAs) are excellent probes able to detect the W1282X point mutation of the cystic fibrosis (CF) gene when biospecific interaction analysis (BIA) by surface plasmon resonance (SPR) and biosensor technologies is performed. The results reported here suggest that BIA is an easy, fast, and automatable(More)
In the present paper, biospecific interaction analysis (BIA) was performed using surface plasmon resonance (SPR) and biosensor technologies to detect the Trp1282Ter mutation (W1282X) of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene. We first immobilized on a SA5 sensor chip a single-stranded biotinylated oligonucleotide containing(More)
The human leukaemic K562 cell line can be induced in vitro to undergo erythroid differentiation by a variety of chemical compounds, including haemin, butyric acid, 5-azacytidine and cytosine arabinoside. Differentiation of K562 cells is associated with an increased expression of embryo-fetal globin genes, such as the zeta, epsilon and gamma globin genes.(More)
BACKGROUND The recent development of biosensor technologies for biospecific interaction analysis enables the monitoring of a variety of molecular reactions in real time by surface plasmon resonance (SPR). If the ligand is a biotinylated single stranded DNA, this technology could monitor DNA-DNA hybridization. This approach could be of great interest in(More)
Surface plasmon resonance (SPR) based biosensors have been described for the identification of genetically modified organisms (GMO) by biospecific interaction analysis (BIA). This paper describes the design and testing of an SPR-based BIA protocol for quantitative determinations of GMOs. Biotinylated multiplex Polymerase Chain Reaction (PCR) products from(More)
Peptide nucleic acids (PNAs) are DNA mimics composed of N-(2-aminoethyl)glycine units. This structure gives to PNAs (a) resistance to DNases and proteinases, (b) capacity to hybridize with high affinity to complementary sequences of single-stranded RNA and DNA, and (c) capacity to form highly stable (PNA)(2)-RNA triplexes with RNA targets. Furthermore,(More)