Learn More
F2-Isoprostanes (IsoPs) are isomers of prostaglandin F2α formed from the nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Since discovery of these molecules by Morrow and Roberts in 1990, F2-IsoPs have been shown to be excellent biomarkers as well as potent mediators of oxidative stress in vivo in humans. Isofurans (IsoFs) are also(More)
Oxidant stress has been implicated in a wide variety of disease processes. One method to quantify oxidative injury is to measure lipid peroxidation. Quantification of a group of prostaglandin F(2)-like compounds derived from the nonezymatic oxidation of arachidonic acid, termed the F(2)-isoprostanes (F(2)-IsoPs), provides an accurate assessment of oxidative(More)
Electrophilic lipids, such as 4-hydroxynonenal (HNE), and the cyclopentenones 15-deoxy-Delta12,14 -prostaglandin J2 (15d-PGJ2) and 15-J2-isoprostane induce both reactive oxygen species (ROS) formation and cellular antioxidant defenses, such as heme oxygenase-1 (HO-1) and glutathione (GSH). When we compared the ability of these distinct electrophiles to(More)
Oxidative stress may play a role in the pathogenesis of systemic lupus erythematosus (SLE). We examined the hypothesis that oxidative stress was associated with indices of lupus disease activity and severity of symptoms. Urinary F2 isoprostane excretion, a validated marker of oxidative stress, was measured in 95 patients with SLE and 103 healthy controls.(More)
OBJECTIVE To test the hypothesis that oxidative stress is increased in patients with rheumatoid arthritis (RA) due to increased inflammation and contributes to the pathogenesis of atherosclerosis. METHODS The independent association between urinary F₂-isoprostane excretion, a measure of oxidative stress, and RA was tested using multiple linear regression(More)
BACKGROUND AND PURPOSE Experimental stroke studies indicate that oxidative stress is a major contributing factor to ischemic cerebral injury. Oxidative stress is also implicated in activation of matrix metalloproteinases (MMPs) and blood-brain barrier injury after ischemia-reperfusion. Plasma biomarkers of oxidative stress may have utility as early(More)
PURPOSE Increased reactive oxygen species may exhaust the antioxidant capability of human defense systems, leading to oxidative stress and cancer development. Urinary F2-isoprostanes, secondary end products of lipid peroxidation, are more accurate markers of oxidative stress than other available biomarkers. No prospective study has investigated whether(More)
Cysteinyl leukotriene (cysLT) overproduction is a hallmark of aspirin-exacerbated respiratory disease (AERD), but its mechanism is poorly understood. Because adherent platelets can convert the leukocyte-derived precursor leukotriene (LT)A(4) to LTC(4), the parent cysLT, through the terminal enzyme LTC(4) synthase, we investigated the contribution of(More)
The ethanol-inducible cytochrome P450 2E1 (CYP2E1) is also induced under different pathological and physiological conditions. Studies including ours have shown that CYP2E1 is bimodally targeted to both the endoplasmic reticulum (microsomes) (mc CYP2E1) and mitochondria (mt CYP2E1). In this study we investigated the role of mtCYP2E1 in ethanol-mediated(More)
COX-2, formally known as prostaglandin endoperoxide H synthase-2 (PGHS-2), catalyzes the committed step in prostaglandin biosynthesis. COX-2 is induced during inflammation and is overexpressed in colon cancer. In vitro, an 18-amino acid segment, residues 595-612, immediately upstream of the C-terminal endoplasmic reticulum targeting sequence is required for(More)