Gina M Doody

Learn More
BACKGROUND Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG)(More)
CD22 is a membrane immunoglobulin (mIg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mIg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mIg. Ligation of CD22 to prevent its coaggregation with mIg lowers the threshold at which mIg activates(More)
B and T lymphocytes develop normally in mice lacking the guanine nucleotide exchange factor Vav-2. However, the immune responses to type II thymus-independent antigen as well as the primary response to thymus-dependent (TD) antigen are defective. Vav-2-deficient mice are also defective in their ability to switch immunoglobulin class, form germinal centers(More)
A diverse spectrum of unique peptide-MHC class I complexes guides CD8 T cell responses toward viral or stress-induced Ags. Multiple components are required to process Ag and facilitate peptide loading in the endoplasmic reticulum. IFN-gamma, a potent proinflammatory cytokine, markedly up-regulates transcription of genes involved in MHC class I assembly.(More)
We show here that Vav-2 is tyrosine phosphorylated following antigen receptor engagement in both B- and T-cells, but potentiates nuclear factor of activated T cells (NFAT)-dependent transcription only in B cells. Vav-2 function requires the N-terminus, as well as functional Dbl homology and SH2 domains. More over, the enhancement of NFAT-dependent(More)
We have investigated the role of the Rho and Rac family small guanine triphosphate (GTP) exchange factors (RhoGEFs), Vav1 and Vav2, in the activation of platelets by the immunoreceptor tyrosine-based activation motif (ITAM)-coupled collagen receptor GPVI and by the G protein-coupled receptor agonist thrombin. The glycoprotein VI (GPVI)-specific agonist(More)
The signaling pathways linked to membrane immunoglobulin (mIg) that are regulated by the coreceptors CD19 and CD22 are not known. The mitogen-activated protein (MAP) kinases ERK2, JNK, and p38 couple extracellular signals to transcriptional responses. The capacity of mIg to activate these MAP kinases is synergistically amplified by coligating CD19, and this(More)
Mice in which the Lyn, Cd22, or Shp-1 gene has been disrupted have hyperactive B cells and autoantibodies. We find that in the absence of Lyn, the ability of CD22 to become tyrosine phosphorylated after ligation of mIg, to recruit SHP-1, and to suppress mIg-induced elevation of intracellular [Ca2+] is lost. Therefore, Lyn is required for the SHP-1-mediated(More)
RhoG, a member of the Rho family of GTPases, has been implicated as a regulator of the actin cytoskeleton. In this study, we show a novel function for the small GTPase RhoG on the regulation of the interferon-gamma promoter and nuclear factor of activated T cells (NFAT) gene transcription in lymphocytes. Optimal function of RhoG for the expression of these(More)
3BP2 is a pleckstrin homology domain- and Src homology 2 (SH2) domain-containing adapter protein that is mutated in the rare human bone disorder cherubism and which has also been implicated in immunoreceptor signaling. However, a function for this protein has yet to be established. Here we show that mice lacking 3BP2 exhibited a perturbation in the(More)