Gina L. Lipscomb

Learn More
In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by(More)
This work describes the identification and characterization of SurR, Pyrococcus furiosus sulphur (S(0)) response regulator. SurR was captured from cell extract using promoter DNA of a hydrogenase operon that is downregulated in the primary response of P. furiosus to S(0), as revealed by DNA microarray experiments. SurR was validated as a sequence-specific(More)
Transcriptional and enzymatic analyses of Pyrococcus furiosus previously indicated that three proteins play key roles in the metabolism of elemental sulfur (S(0)): a membrane-bound oxidoreductase complex (MBX), a cytoplasmic coenzyme A-dependent NADPH sulfur oxidoreductase (NSR), and sulfur-induced protein A (SipA). Deletion strains, referred to as MBX1,(More)
Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol(More)
Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents(More)
Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as(More)
We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its(More)
Metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T(opt) 95-100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO2 using enzymes from the Metallosphaera sedula (T(opt) 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal(More)
Pyrococcus furiosus grows optimally near 100°C by fermenting carbohydrates to produce hydrogen (H(2)) or, if elemental sulfur (S(0)) is present, hydrogen sulfide instead. It contains two cytoplasmic hydrogenases, SHI and SHII, that use NADP(H) as an electron carrier and a membrane-bound hydrogenase (MBH) that utilizes the redox protein ferredoxin. We(More)
Ethanol is an important target for the renewable production of liquid transportation fuels. It can be produced biologically from pyruvate, via pyruvate decarboxylase, or from acetyl-CoA, by alcohol dehydrogenase E (AdhE). Thermophilic bacteria utilize AdhE, which is a bifunctional enzyme that contains both acetaldehyde dehydrogenase and alcohol(More)